scholarly journals A broadband optical cavity spectrometer for measuring weak near-ultraviolet absorption spectra of gases

2010 ◽  
Vol 3 (5) ◽  
pp. 4571-4602 ◽  
Author(s):  
J. Chen ◽  
D. S. Venables

Abstract. Accurate absorption spectra of gases in the near-ultraviolet (300 to 400 nm) are essential in atmospheric observations and laboratory studies. This paper describes a novel incoherent broadband cavity-enhanced absorption spectroscopy (IBBCEAS) instrument for measuring very weak absorption spectra from 335 to 375 nm. The instrument performance was validated against the 3B1−X1A1 transition of SO2. The measured absorption varied linearly with SO2 column density and the resulting spectrum agrees well with published spectra. Using the instrument, we report new absorption cross-sections of O3, acetone, 2-butanone, and 2-pentanone in this spectral region, where literature data diverge considerably. In the absorption minimum between the Huggins and Chappuis bands, our absorption spectra fall at the lower range of reported ozone absorption cross-sections. The spectra of the ketones agree with prior spectra at moderate absorptions, but differ significantly at the limits of other instruments' sensitivity. The collision-induced absorption of the O4 dimer at 360.5 nm was also measured and found to have a maximum cross-section of ca. 4.0 × 10−46 cm5 molecule−2. We demonstrate the application of the instrument to quantifying low concentrations of the short-lived radical, BrO, in the presence of stronger absorptions from Br2 and O3.

2011 ◽  
Vol 4 (3) ◽  
pp. 425-436 ◽  
Author(s):  
J. Chen ◽  
D. S. Venables

Abstract. Accurate absorption spectra of gases in the near–ultraviolet (300 to 400 nm) are essential in atmospheric observations and laboratory studies. This paper describes a novel incoherent broadband cavity-enhanced absorption spectroscopy (IBBCEAS) instrument for measuring very weak absorption spectra from 335 to 375 nm. The instrument performance was validated against the 3B1-X1A1 transition of SO2. The measured absorption varied linearly with SO2 column density and the resulting spectrum agrees well with published spectra. Using the instrument, we report new absorption cross-sections of O3, acetone, 2-butanone, and 2-pentanone in this spectral region, where literature data diverge considerably. In the absorption minimum between the Huggins and Chappuis bands, our absorption spectra fall at the lower range of reported ozone absorption cross-sections. The spectra of the ketones agree with prior spectra at moderate absorptions, but differ significantly at the limits of other instruments' sensitivity. The collision-induced absorption of the O4 dimer at 360.5 nm was also measured and found to have a maximum cross-section of ca. 4.0×10−46 cm5 molecule−2. We demonstrate the application of the instrument to quantifying low concentrations of the short-lived radical, BrO, in the presence of stronger absorptions from Br2 and O3.


2019 ◽  
Author(s):  
Jingwei Liu ◽  
Xin Li ◽  
Yiming Yang ◽  
Haichao Wang ◽  
Yusheng Wu ◽  
...  

Abstract. A system based on incoherent broadband cavity enhanced absorption spectroscopy (IBBCEAS) has been developed for simultaneous measurement of nitrogen dioxide (NO2), glyoxal (GLY) and methylglyoxal (MGLY). On this system, the absorption of light around 460 nm is spectrally resolved. The concentration of absorbers is determined from a multi-component fit. At an integration time of 100 s, the measurement sensitivity (2σ) for NO2, GLY, and MGLY can reach 18 ppt, 30 ppt, and 100 ppt, respectively. The measurement uncertainty which mainly originates from path length calibration, sampling loss, and uncertainty of absorption cross sections is estimated to be 8 % for NO2, 8 % for GLY, and 16 % for MGLY. When applying the instrument during field observations, we found significant influence of NO2 on spectra fitting for retrieving GLY and MGLY concentration, which is caused by the fact that NO2 has higher absorption cross section and higher ambient concentration. In order to minimize such an effect, a NO2 photolytic convertor (NPC) which removes sampled NO2 at an efficiency of 76 % was integrated on the IBBCEAS system. Since sampled GLY and MGLY are mostly conserved (≥ 95 %) after passing through the NPC, the quality of the spectra fitting and the measurement accuracy of ambient GLY and MGLY were largely improved.


2019 ◽  
Vol 12 (8) ◽  
pp. 4439-4453 ◽  
Author(s):  
Jingwei Liu ◽  
Xin Li ◽  
Yiming Yang ◽  
Haichao Wang ◽  
Yusheng Wu ◽  
...  

Abstract. A system based on incoherent broadband cavity-enhanced absorption spectroscopy (IBBCEAS) has been developed for simultaneous measurement of nitrogen dioxide (NO2), glyoxal (GLY), and methylglyoxal (MGLY). In this system, the measured light absorption at around 460 nm is spectrally resolved. The concentration of absorbers is determined from a multicomponent fit. At an integration time of 100 s, the measurement sensitivity (2σ) for NO2, GLY, and MGLY is 18, 30, and 100 ppt, respectively. The measurement uncertainty, which mainly originates from path length calibration, sampling loss, and uncertainty of absorption cross sections is estimated to be 8 % for NO2, 8 % for GLY, and 16 % for MGLY. When deploying the instrument during field observations, we found significant influence of NO2 on the spectra fitting for retrieving GLY and MGLY concentrations, which is caused by the fact that NO2 has a higher absorption cross section and higher ambient concentration. In order to minimize such an effect, a NO2 photolytic convertor (NPC), which removes sampled NO2 at an efficiency of 76 %, was integrated on the IBBCEAS system. Since sampled GLY and MGLY are mostly (≥95 %) conserved after passing through the NPC, the quality of the spectra fitting and the measurement accuracy of ambient GLY and MGLY under NO2-rich environments could be improved.


2019 ◽  
Author(s):  
Nick Jordan ◽  
Hans D. Osthoff

Abstract. This work describes a state-of-the-art, incoherent broadband cavity-enhanced absorption spectroscopy (IBBCEAS) instrument for quantification of HONO and NO2 mixing ratios in ambient air. The instrument is operated in the near-ultraviolet spectral region between 361 and 388 nm. The mirror reflectivity and optical cavity transmission function were determined from the optical extinction observed when sampling air and helium. To verify the accuracy of this approach, Rayleigh scattering cross-sections of nitrogen and argon were measured and found in quantitative agreement with literature values. The mirror reflectivity exceeded 99.98 %, at its maximum near 373 nm, resulting in an absorption pathlength of 6 km from a 1 m long optical cavity. The instrument precision was assessed through Allan variance analyses and showed minimum deviations of ±58 pptv and ±210 pptv (1σ) for HONO and NO2, respectively, at an optimum acquisition time of 5 min. Measurements of HONO and NO2 mixing ratios in laboratory-generated mixtures by IBBCEAS were compared to thermal dissociation cavity ring-down spectroscopy (TD-CRDS) data and agreed within combined experimental uncertainties. Sample ambient air data collected in Calgary are presented.


2020 ◽  
Vol 13 (1) ◽  
pp. 273-285 ◽  
Author(s):  
Nick Jordan ◽  
Hans D. Osthoff

Abstract. This work describes an incoherent broadband cavity-enhanced absorption spectroscopy (IBBCEAS) instrument for quantification of HONO and NO2 mixing ratios in ambient air. The instrument is operated in the near-ultraviolet spectral region between 361 and 388 nm. The mirror reflectivity and optical cavity transmission function were determined from the optical extinction observed when sampling air and helium. To verify the accuracy of this approach, Rayleigh scattering cross sections of nitrogen and argon were measured and found to be in quantitative agreement with literature values. The mirror reflectivity exceeded 99.98 %, at its maximum near 373 nm, resulting in an absorption path length of 6 km from a 1 m long optical cavity. The instrument precision was assessed through Allan variance analyses and showed minimum deviations of ±58 and ±210 pptv (1σ) for HONO and NO2, respectively, at an optimum acquisition time of 5 min. Measurements of HONO and NO2 mixing ratios in laboratory-generated mixtures by IBBCEAS were compared to thermal dissociation cavity ring-down spectroscopy (TD-CRDS) data and agreed within combined experimental uncertainties. Sample ambient air data collected in Calgary are presented.


2004 ◽  
Vol 46 (2) ◽  
pp. 146-154 ◽  
Author(s):  
U. Carlberg ◽  
P.-S. Kildal ◽  
A. Wolfgang ◽  
O. Sotoudeh ◽  
C. Orlenius

2020 ◽  
Author(s):  
Jingwei Liu ◽  
Xin Li ◽  
Yiming Yang ◽  
Haichao Wang ◽  
Cailing Kuang ◽  
...  

<p>Formaldehyde (HCHO) is the most abundant atmospheric carbonyl compound and plays an important role in the troposphere. However, HCHO detection via traditional incoherent broadband cavity enhanced absorption spectroscopy (IBBCEAS) is limited by short optical path lengths and weak light intensity. Thus, a new light-emitting diode (LED)-based IBBCEAS was developed herein to measure HCHO in ambient air. Two LEDs (325 and 340 nm) coupled by a Y-type fiber bundle were used as an IBBCEAS light source, which provided both high light intensity and a wide spectral fitting range. The reflectivity of the two cavity mirrors used herein was 0.99965 (1 – reflectivity = 350 ppm loss) at 350 nm, which corresponded with an effective optical path length of 2.15 km within a 0.84 m cavity. At an integration time of 30 s, the measurement precision (1σ) for HCHO was 380 parts per trillion volume (pptv) and the corresponding uncertainty was 8.3%. The instrument was successfully deployed for the first time in a field campaign and delivered results that correlated well with those of a commercial wet-chemical instrument based on Hantzsch fluorimetry (R<sup>2</sup> = 0.769). The combined light source based on Y-type fiber bundle overcomes the difficulty of measuring ambient HCHO via IBBCEAS in near-ultraviolet range, which may extend IBBCEAS technology to measure other atmospheric trace gases with high precision.</p>


2007 ◽  
Vol 7 (3) ◽  
pp. 713-720 ◽  
Author(s):  
C. M. Roehl ◽  
Z. Marka ◽  
J. L. Fry ◽  
P. O. Wennberg

Abstract. Knowledge of molecular photolysis cross sections is important for determining atmospheric lifetimes and fates of many species. A method and laser apparatus for measurement of these cross sections in the near-ultraviolet (UV) region is described. The technique is based on action spectroscopy, where the yield of a photodissociation product (in this case OH) is measured as a function of excitation energy. For compounds yielding OH, this method can be used to measure near-UV photodissociation cross section as low as 10−23 cm2 molecule−1. The method is applied to determine the photodissociation cross sections for methyl hydroperoxide (CH3OOH; MHP) and hydroxymethyl hydroperoxide (HOCH2OOH; HMHP) in the 305–365 nm wavelength range. The measured cross sections are in good agreement with previous measurements of absorption cross sections.


2020 ◽  
Vol 13 (11) ◽  
pp. 6311-6323 ◽  
Author(s):  
Axel Fouqueau ◽  
Manuela Cirtog ◽  
Mathieu Cazaunau ◽  
Edouard Pangui ◽  
Pascal Zapf ◽  
...  

Abstract. An incoherent broadband cavity-enhanced absorption spectroscopy (IBBCEAS) technique has been developed for the in situ monitoring of NO3 radicals at the parts per trillion level in the CSA simulation chamber (at LISA). The technique couples an incoherent broadband light source centered at 662 nm with a high-finesse optical cavity made of two highly reflecting mirrors. The optical cavity which has an effective length of 82 cm allows for up to 3 km of effective absorption and a high sensitivity for NO3 detection (up to 6 ppt for an integration time of 10 s). This technique also allows for NO2 monitoring (up to 9 ppb for an integration time of 10 s). Here, we present the experimental setup as well as tests for its characterization and validation. The validation tests include an intercomparison with another independent technique (Fourier-transform infrared, FTIR) and the absolute rate determination for the reaction trans-2-butene + NO3, which is already well documented in the literature. The value of (4.13 ± 0.45) × 10−13 cm3 molecule−1 s−1 has been found, which is in good agreement with previous determinations. From these experiments, optimal operation conditions are proposed. The technique is now fully operational and can be used to determine rate constants for fast reactions involving complex volatile organic compounds (VOCs; with rate constants up to 10−10 cm3 molecule−1 s−1).


1997 ◽  
Vol 51 (9) ◽  
pp. 1311-1315 ◽  
Author(s):  
J. Vattulainen ◽  
L. Wallenius ◽  
J. Stenberg ◽  
R. Hernberg ◽  
V. Linna

A heated and pressurized quartz cell with 150.5-mm pathlength was used to experimentally determine UV absorption spectra and further absorption cross sections of SO2, C2H2, and O2 in the wavelength range between 200 and 400 nm. Spectra were recorded at room temperature, and at 600 and 800 °C and at absolute pressures between 1 and 6 bar. A 30-W deuterium lamp was used as a light source, and the light was detected with a photomultiplier tube through a 0.4-m Czerny–Turner monochromator. Slit widths of the monochromator were adjusted to achieve a 5 Å measurement bandwidth, and the scan through the wavelength range was made in 5 Å steps. For each individual temperature and pressure level, a reference spectrum was first recorded with the cell filled with nitrogen. After this, the cell was filled with the selected species mixed with nitrogen, and the absorption spectra were recorded in similar conditions. The studied gas mixtures were calibrated to 3% accuracy.


Sign in / Sign up

Export Citation Format

Share Document