scholarly journals Global cloud top height retrieval using SCIAMACHY limb spectra: model studies and first results

2015 ◽  
Vol 8 (8) ◽  
pp. 8295-8352 ◽  
Author(s):  
K.-U. Eichmann ◽  
L. Lelli ◽  
C. von Savigny ◽  
H. Sembhi ◽  
J. P. Burrows

Abstract. Cloud top heights (CTH) were retrieved for the period 1 January 2003 to 7 April 2012 using height-resolved limb spectra measured with the Scanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) on board ENVISAT (ENVIronmental SATellite). In this study, we tested the sensitivity of the colour index method used in the retrieval code SCODA (SCIAMACHY Cloud Detection Algorithm) and the accuracy of the retrieved CTHs in comparison to other methods. Sensitivity studies using the radiative transfer model SCIATRAN showed that the method is capable of generally detecting cloud tops down to about 5 km and very thin cirrus clouds even up to the tropopause. Volcanic particles can also be detected that occasionally reach the lower stratosphere. Low clouds at 2–3 km can only be retrieved under very clean atmospheric conditions, as light scattering of aerosols interferes with the cloud retrieval. Upper tropospheric ice clouds are detectable for cloud optical depths down to about τN = 0.005, which is in the subvisual range. The detection sensitivity decreases towards the surface. An optical thickness of roughly 0.1 was the lower detection limit for water cloud top heights at 5 km. This value is much lower than thresholds reported for the passive cloud detection in nadir viewing direction. Comparisons with SCIAMACHY nadir cloud top heights, calculated with the Semi-Analytical CloUd Retrieval Algorithm (SACURA), showed a good agreement in the global cloud field distribution. But only opaque clouds (τN > 5) are detectable with the nadir passive retrieval technique in the UV-visible and infrared wavelength range. So due to the frequent occurrence of thin and sub-visual cirrus clouds in the tropics, large cloud top height deviations were detected between both viewing geometries. Also the land/sea contrast seen in nadir retrievals was not detected in limb mode. Co-located cloud top height measurements of the limb viewing Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on ENVISAT for the period from January 2008 to March 2012 were compared, showing good agreement to within 1 km, which is smaller than the vertical field of view of both instruments. Lower stratospheric aerosols from volcanic eruptions occasionally interfered with the cloud retrieval and inhibited detection of tropospheric clouds. Examples of the impact of these events are shown for the volcanoes Kasatochi in August 2008, Sarychev Peak in June 2009, and Nabro in June 2010. Long-lasting aerosol layers were detected after these events in the Northern Hemisphere down to the tropics. Particle top heights up to about 22 km were retrieved in 2009, when the enhanced lower stratospheric aerosol layer persisted for about 7 months. Up to about 82 % of the Northern hemispheric lower stratosphere between 30° and 70° was covered by scattering particles in August 2009 and nearly half in October 2008.

2016 ◽  
Vol 9 (2) ◽  
pp. 793-815 ◽  
Author(s):  
Kai-Uwe Eichmann ◽  
Luca Lelli ◽  
Christian von Savigny ◽  
Harjinder Sembhi ◽  
John P. Burrows

Abstract. Cloud top heights (CTHs) are retrieved for the period 1 January 2003 to 7 April 2012 using height-resolved limb spectra measured with the SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY (SCIAMACHY) on board ENVISAT (ENVIronmental SATellite). In this study, we present the retrieval code SCODA (SCIAMACHY cloud detection algorithm) based on a colour index method and test the accuracy of the retrieved CTHs in comparison to other methods. Sensitivity studies using the radiative transfer model SCIATRAN show that the method is capable of detecting cloud tops down to about 5 km and very thin cirrus clouds up to the tropopause. Volcanic particles can be detected that occasionally reach the lower stratosphere. Upper tropospheric ice clouds are observable for a nadir cloud optical thickness (COT)  ≥  0.01, which is in the subvisual range. This detection sensitivity decreases towards the lowermost troposphere. The COT detection limit for a water cloud top height of 5 km is roughly 0.1. This value is much lower than thresholds reported for passive cloud detection methods in nadir-viewing direction. Low clouds at 2 to 3 km can only be retrieved under very clean atmospheric conditions, as light scattering of aerosol particles interferes with the cloud particle scattering. We compare co-located SCIAMACHY limb and nadir cloud parameters that are retrieved with the Semi-Analytical CloUd Retrieval Algorithm (SACURA). Only opaque clouds (τN,c > 5) are detected with the nadir passive retrieval technique in the UV–visible and infrared wavelength ranges. Thus, due to the frequent occurrence of thin clouds and subvisual cirrus clouds in the tropics, larger CTH deviations are detected between both viewing geometries. Zonal mean CTH differences can be as high as 4 km in the tropics. The agreement in global cloud fields is sufficiently good. However, the land–sea contrast, as seen in nadir cloud occurrence frequency distributions, is not observed in limb geometry. Co-located cloud top height measurements of the limb-viewing Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on ENVISAT are compared for the period from January 2008 to March 2012. The global CTH agreement of about 1 km is observed, which is smaller than the vertical field of view of both instruments. Lower stratospheric aerosols from volcanic eruptions occasionally interfere with the cloud retrieval and inhibit the detection of tropospheric clouds. The aerosol impact on cloud retrievals was studied for the volcanoes Kasatochi (August 2008), Sarychev Peak (June 2009), and Nabro (June 2011). Long-lasting aerosol scattering is detected after these events in the Northern Hemisphere for heights above 12.5 km in tropical and polar latitudes. Aerosol top heights up to about 22 km are found in 2009 and the enhanced lower stratospheric aerosol layer persisted for about 7 months. In August 2009 about 82 % of the lower stratosphere between 30 and 70° N was filled with scattering particles and nearly 50 % in October 2008.


2014 ◽  
Vol 7 (4) ◽  
pp. 5087-5139 ◽  
Author(s):  
R. Pommrich ◽  
R. Müller ◽  
J.-U. Grooß ◽  
P. Konopka ◽  
F. Ploeger ◽  
...  

Abstract. Variations in the mixing ratio of trace gases of tropospheric origin entering the stratosphere in the tropics are of interest for assessing both troposphere to stratosphere transport fluxes in the tropics and the impact of these transport fluxes on the composition of the tropical lower stratosphere. Anomaly patterns of carbon monoxide (CO) and long-lived tracers in the lower tropical stratosphere allow conclusions about the rate and the variability of tropical upwelling to be drawn. Here, we present a simplified chemistry scheme for the Chemical Lagrangian Model of the Stratosphere (CLaMS) for the simulation, at comparatively low numerical cost, of CO, ozone, and long-lived trace substances (CH4, N2O, CCl3F (CFC-11), CCl2F2 (CFC-12), and CO2) in the lower tropical stratosphere. For the long-lived trace substances, the boundary conditions at the surface are prescribed based on ground-based measurements in the lowest model level. The boundary condition for CO in the free troposphere is deduced from MOPITT measurements (at ≈ 700–200 hPa). Due to the lack of a specific representation of mixing and convective uplift in the troposphere in this model version, enhanced CO values, in particular those resulting from convective outflow are underestimated. However, in the tropical tropopause layer and the lower tropical stratosphere, there is relatively good agreement of simulated CO with in-situ measurements (with the exception of the TROCCINOX campaign, where CO in the simulation is biased low ≈ 10–20 ppbv). Further, the model results are of sufficient quality to describe large scale anomaly patterns of CO in the lower stratosphere. In particular, the zonally averaged tropical CO anomaly patterns (the so called "tape recorder" patterns) simulated by this model version of CLaMS are in good agreement with observations. The simulations show a too rapid upwelling compared to observations as a consequence of the overestimated vertical velocities in the ERA-interim reanalysis data set. Moreover, the simulated tropical anomaly patterns of N2O are in good agreement with observations. In the simulations, anomaly patterns for CH4 and CFC-11 were found to be consistent with those of N2O; for all long-lived tracers, positive anomalies are simulated because of the enhanced tropical upwelling in the easterly phase of the quasi-biennial oscillation.


2020 ◽  
Author(s):  
Ling Zou ◽  
Sabine Griessbach ◽  
Lars Hoffmann ◽  
Bing Gong ◽  
Lunche Wang

Abstract. As knowledge about the cirrus clouds in the lower stratosphere is limited, reliable long-term measurements are needed to assess their characteristics, radiative impact and important role in upper troposphere and lower stratosphere (UTLS) chemistry. To investigate the global and seasonal distribution of stratospheric cirrus clouds, we used the latest version (V4.x) of the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) and Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) data. For the identification of stratospheric cirrus clouds, precise information on both, the cloud top height (CTH) and the tropopause height is crucial. Here, we used lapse rate tropopause heights estimated from the ERA-Interim global reanalysis. Considering the uncertainties of the tropopause heights and the vertical sampling grid of the CALIPSO data, we considered cirrus clouds with CTHs more than 0.5 km above the tropopause as being stratospheric. We focused on nighttime CALIPSO measurements, because of their higher detection sensitivity. A six-year mean (2006–2012) global distribution of stratospheric cirrus cloud from CALIPSO showed that higher CTH occurrence frequencies are observed in the tropics than in the extra-tropics. Tropical hotspots of stratospheric cirrus clouds associated with deep convection are located over Equatorial Africa, South and Southeast Asia, the western Pacific and South America. Stratospheric cirrus clouds were more often detected in December–February (15 %) than June–August (8 %) in the tropics (± 20°). At middle (40–60°) and higher latitudes (> 60°), CALIPSO observed on average about 2 % stratospheric cirrus clouds. Observations of stratospheric cirrus cloud with MIPAS are presented here for the first time. Taking into account the MIPAS vertical sampling and broad field of view, we considered cirrus CTHs detected not less than 0.75 km above the tropopause as being stratospheric. Compared to CALIPSO, MIPAS observed twice as many stratospheric cirrus clouds at northern and southern middle latitudes (occurrence frequencies of 4–5 % for MIPAS rather than about 2 % for CALIPSO). We attribute more frequent observations of stratospheric cirrus clouds with MIPAS to higher detection sensitivity of the instrument to optically thin clouds. Sensitivity tests on MIPAS stratospheric cloud detections have been conducted to rule out sampling artefacts. Future work should focus on better understanding the origin of the stratospheric cirrus clouds and their impact on radiative forcing and climate.


2014 ◽  
Vol 7 (6) ◽  
pp. 2895-2916 ◽  
Author(s):  
R. Pommrich ◽  
R. Müller ◽  
J.-U. Grooß ◽  
P. Konopka ◽  
F. Ploeger ◽  
...  

Abstract. Variations in the mixing ratio of trace gases of tropospheric origin entering the stratosphere in the tropics are of interest for assessing both troposphere to stratosphere transport fluxes in the tropics and the impact of these transport fluxes on the composition of the tropical lower stratosphere. Anomaly patterns of carbon monoxide (CO) and long-lived tracers in the lower tropical stratosphere allow conclusions about the rate and the variability of tropical upwelling to be drawn. Here, we present a simplified chemistry scheme for the Chemical Lagrangian Model of the Stratosphere (CLaMS) for the simulation, at comparatively low numerical cost, of CO, ozone, and long-lived trace substances (CH4, N2O, CCl3F (CFC-11), CCl2F2 (CFC-12), and CO2) in the lower tropical stratosphere. For the long-lived trace substances, the boundary conditions at the surface are prescribed based on ground-based measurements in the lowest model level. The boundary condition for CO in the lower troposphere (below about 4 km) is deduced from MOPITT measurements. Due to the lack of a specific representation of mixing and convective uplift in the troposphere in this model version, enhanced CO values, in particular those resulting from convective outflow are underestimated. However, in the tropical tropopause layer and the lower tropical stratosphere, there is relatively good agreement of simulated CO with in situ measurements (with the exception of the TROCCINOX campaign, where CO in the simulation is biased low ≈10–15 ppbv). Further, the model results (and therefore also the ERA-Interim winds, on which the transport in the model is based) are of sufficient quality to describe large scale anomaly patterns of CO in the lower stratosphere. In particular, the zonally averaged tropical CO anomaly patterns (the so called "tape recorder" patterns) simulated by this model version of CLaMS are in good agreement with observations, although the simulations show a too rapid upwelling compared to observations as a consequence of the overestimated vertical velocities in the ERA-Interim reanalysis data set. Moreover, the simulated tropical anomaly patterns of N2O are in good agreement with observations. In the simulations, anomaly patterns of CH4 and CFC-11 were found to be very similar to those of N2O; for all long-lived tracers, positive anomalies are simulated because of the enhanced tropical upwelling in the easterly shear phase of the quasi-biennial oscillation.


2020 ◽  
Vol 20 (16) ◽  
pp. 9939-9959
Author(s):  
Ling Zou ◽  
Sabine Griessbach ◽  
Lars Hoffmann ◽  
Bing Gong ◽  
Lunche Wang

Abstract. As knowledge about the cirrus clouds in the lower stratosphere is limited, reliable long-term measurements are needed to assess their characteristics, radiative impact and important role in upper troposphere and lower stratosphere (UTLS) chemistry. We used 6 years (2006–2012) of Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) measurements to investigate the global and seasonal distribution of stratospheric cirrus clouds and compared the MIPAS results with results derived from the latest version (V4.x) of the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) data. For the identification of stratospheric cirrus clouds, precise information on both the cloud top height (CTH) and the tropopause height is crucial. Here, we used lapse rate tropopause heights estimated from the ERA-Interim global reanalysis. Considering the uncertainties of the tropopause heights and the vertical sampling grid, we define CTHs more than 0.5 km above the tropopause as stratospheric for CALIPSO data. For MIPAS data, we took into account the coarser vertical sampling grid and the broad field of view so that we considered cirrus CTHs detected more than 0.75 km above the tropopause as stratospheric. Further sensitivity tests were conducted to rule out sampling artefacts in MIPAS data. The global distribution of stratospheric cirrus clouds was derived from night-time measurements because of the higher detection sensitivity of CALIPSO. In both data sets, MIPAS and CALIPSO, the stratospheric cirrus cloud occurrence frequencies are significantly higher in the tropics than in the extra-tropics. Tropical hotspots of stratospheric cirrus clouds associated with deep convection are located over equatorial Africa, South and Southeast Asia, the western Pacific, and South America. Stratospheric cirrus clouds were more often detected in December–February (15 %) than June–August (8 %) in the tropics (±20∘). At northern and southern middle latitudes (40–60∘), MIPAS observed about twice as many stratospheric cirrus clouds (occurrence frequencies of 4 %–5 % for MIPAS rather than about 2 % for CALIPSO). We attribute more frequent observations of stratospheric cirrus clouds with MIPAS to the higher detection sensitivity of the instrument to optically thin clouds. In contrast to the difference between daytime and night-time occurrence frequencies of stratospheric cirrus clouds by a factor of about 2 in zonal means in the tropics (4 % and 10 %, respectively) and at middle latitudes for CALIPSO data, there is little diurnal cycle in MIPAS data, in which the difference of occurrence frequencies in the tropics is about 1 percentage point in zonal mean and about 0.5 percentage point at middle latitudes. The difference between CALIPSO day and night measurements can also be attributed to their differences in detection sensitivity. Future work should focus on better understanding the origin of the stratospheric cirrus clouds and their impact on radiative forcing and climate.


2011 ◽  
Vol 4 (2) ◽  
pp. 1185-1211 ◽  
Author(s):  
R. Pommrich ◽  
R. Müller ◽  
J.-U. Grooß ◽  
P. Konopka ◽  
G. Günther ◽  
...  

Abstract. Variations in the mixing ratio of trace gases of tropospheric origin entering the stratosphere in the tropics are of interest for assessing both troposphere to stratosphere transport fluxes in the tropics and the impact on the composition of the tropical lower stratosphere of quasi-horizontal in-mixing into the tropical tropopause layer from the mid-latitude stratosphere. Here, we present a simplified chemistry scheme for the Chemical Lagrangian Model of the Stratosphere (CLaMS) for the simulation, at comparatively low numerical cost, of CO, ozone, and long-lived trace substances (CH4, N2O, CCl3F, and CO2) in the lower tropical stratosphere. The boundary conditions at the ground are represented for the long-lived trace substances CH4, N2O, CCl3F, and CO2 based on ground-based measurements. The boundary condition for CO in the free troposphere is deduced from MOPITT measurements. We find that the zonally averaged tropical CO anomaly patterns simulated by this model version of CLaMS are in good agreement with observations. The introduction of a new scheme in the ECMWF integrated forecast system (Tompkins et al., 2007) for the ice supersaturation after September 2006, results in a somewhat less good agreement between observed and simulated CO patterns in the tropical lower stratosphere after this date.


2021 ◽  
Vol 14 (4) ◽  
pp. 3153-3168
Author(s):  
Irene Bartolome Garcia ◽  
Reinhold Spang ◽  
Jörn Ungermann ◽  
Sabine Griessbach ◽  
Martina Krämer ◽  
...  

Abstract. Cirrus clouds contribute to the general radiation budget of the Earth and play an important role in climate projections. Of special interest are optically thin cirrus clouds close to the tropopause due to the fact that their impact is not yet well understood. Measuring these clouds is challenging as both high spatial resolution as well as a very high detection sensitivity are needed. These criteria are fulfilled by the infrared limb sounder GLORIA (Gimballed Limb Observer for Radiance Imaging of the Atmosphere). This study presents a characterization of observed cirrus clouds using the data obtained by GLORIA aboard the German research aircraft HALO during the WISE (Wave-driven ISentropic Exchange) campaign in September and October 2017. We developed an optimized cloud detection method based on the cloud index and the extinction coefficient retrieved at the microwindow 832.4–834.4 cm−1. We derived macro-physical characteristics of the detected cirrus clouds such as cloud top height, cloud bottom height, vertical extent and cloud top position with respect to the tropopause. The fraction of cirrus clouds detected above the tropopause is on the order of 13 % to 27 %. In general, good agreement with the clouds predicted by the ERA5 reanalysis dataset is obtained. However, cloud occurrence is ≈ 50 % higher in the observations for the region close to and above the tropopause. Cloud bottom heights are also detected above the tropopause. However, considering the uncertainties, we cannot confirm the formation of unattached cirrus layers above the tropopause.


2017 ◽  
Vol 30 (7) ◽  
pp. 2523-2534 ◽  
Author(s):  
Lorenzo M. Polvani ◽  
Lei Wang ◽  
Valentina Aquila ◽  
Darryn W. Waugh

The impact of ozone-depleting substances on global lower-stratospheric temperature trends is widely recognized. In the tropics, however, understanding lower-stratospheric temperature trends has proven more challenging. While the tropical lower-stratospheric cooling observed from 1979 to 1997 has been linked to tropical ozone decreases, those ozone trends cannot be of chemical origin, as active chlorine is not abundant in the tropical lower stratosphere. The 1979–97 tropical ozone trends are believed to originate from enhanced upwelling, which, it is often stated, would be driven by increasing concentrations of well-mixed greenhouse gases. This study, using simple arguments based on observational evidence after 1997, combined with model integrations with incrementally added single forcings, argues that trends in ozone-depleting substances, not well-mixed greenhouse gases, have been the primary driver of temperature and ozone trends in the tropical lower stratosphere until 1997, and this has occurred because ozone-depleting substances are key drivers of tropical upwelling and, more generally, of the entire Brewer–Dobson circulation.


2014 ◽  
Vol 14 (6) ◽  
pp. 2987-3015 ◽  
Author(s):  
C. S. Zerefos ◽  
P. Tetsis ◽  
A. Kazantzidis ◽  
V. Amiridis ◽  
S. C. Zerefos ◽  
...  

Abstract. We examine sunsets painted by famous artists as proxy information for the aerosol optical depth after major volcanic eruptions. Images derived from precision colour protocols applied to the paintings were compared to online images, and found that the latter, previously analysed, provide accurate information. Aerosol optical depths (AODs) at 550 nm, corresponding to Northern Hemisphere middle latitudes, calculated by introducing red-to-green (R / G) ratios from a large number of paintings to a radiative transfer model, were significantly correlated with independent proxies from stratospheric AOD and optical extinction data, the dust veil index, and ice core volcanic indices. AODs calculated from paintings were grouped into 50-year intervals from 1500 to 2000. The year of each eruption and the 3 following years were defined as "volcanic". The remaining "non-volcanic" years were used to provide additional evidence of a multidecadal increase in the atmospheric optical depths during the industrial "revolution". The increase of AOD at 550 nm calculated from the paintings grows from 0.15 in the middle 19th century to about 0.20 by the end of the 20th century. To corroborate our findings, an experiment was designed in which a master painter/colourist painted successive sunsets during and after the passage of Saharan aerosols over the island of Hydra in Greece. Independent solar radiometric measurements confirmed that the master colourist's R / G ratios which were used to model his AODs, matched the AOD values measured in situ by co-located sun photometers during the declining phase of the Saharan aerosol. An independent experiment was performed to understand the difference between R / G ratios calculated from a typical volcanic aerosol and those measured from the mineral aerosol during the Hydra experiment. It was found that the differences in terms of R / G ratios were small, ranging between −2.6% and +1.6%. Also, when analysing different parts of cloudless skies of paintings following major volcanic eruptions, any structural differences seen in the paintings had not altered the results discussed above. However, a detailed study on all possible sources of uncertainties involved (such as the impact of clouds on R / G ratios) still needs to be studied. Because of the large number of paintings studied, we tentatively propose the conclusion that regardless of the school, red-to-green ratios from great masters can provide independent proxy AODs that correlate with widely accepted proxies and with independent measurements.


2021 ◽  
Vol 14 (10) ◽  
pp. 6483-6507
Author(s):  
Zhao-Cheng Zeng ◽  
Vijay Natraj ◽  
Feng Xu ◽  
Sihe Chen ◽  
Fang-Ying Gong ◽  
...  

Abstract. Remote sensing of greenhouse gases (GHGs) in cities, where high GHG emissions are typically associated with heavy aerosol loading, is challenging due to retrieval uncertainties caused by the imperfect characterization of scattering by aerosols. We investigate this problem by developing GFIT3, a full physics algorithm to retrieve GHGs (CO2 and CH4) by accounting for aerosol scattering effects in polluted urban atmospheres. In particular, the algorithm includes coarse- (including sea salt and dust) and fine- (including organic carbon, black carbon, and sulfate) mode aerosols in the radiative transfer model. The performance of GFIT3 is assessed using high-spectral-resolution observations over the Los Angeles (LA) megacity made by the California Laboratory for Atmospheric Remote Sensing Fourier transform spectrometer (CLARS-FTS). CLARS-FTS is located on Mt. Wilson, California, at 1.67 km a.s.l. overlooking the LA Basin, and it makes observations of reflected sunlight in the near-infrared spectral range. The first set of evaluations are performed by conducting retrieval experiments using synthetic spectra. We find that errors in the retrievals of column-averaged dry air mole fractions of CO2 (XCO2) and CH4 (XCH4) due to uncertainties in the aerosol optical properties and atmospheric a priori profiles are less than 1 % on average. This indicates that atmospheric scattering does not induce a large bias in the retrievals when the aerosols are properly characterized. The methodology is then further evaluated by comparing GHG retrievals using GFIT3 with those obtained from the CLARS-GFIT algorithm (used for currently operational CLARS retrievals) that does not account for aerosol scattering. We find a significant correlation between retrieval bias and aerosol optical depth (AOD). A comparison of GFIT3 AOD retrievals with collocated ground-based observations from AErosol RObotic NETwork (AERONET) shows that the developed algorithm produces very accurate results, with biases in AOD estimates of about 0.02. Finally, we assess the uncertainty in the widely used tracer–tracer ratio method to obtain CH4 emissions based on CO2 emissions and find that using the CH4/CO2 ratio effectively cancels out biases due to aerosol scattering. Overall, this study of applying GFIT3 to CLARS-FTS observations improves our understanding of the impact of aerosol scattering on the remote sensing of GHGs in polluted urban atmospheric environments. GHG retrievals from CLARS-FTS are potentially complementary to existing ground-based and spaceborne observations to monitor anthropogenic GHG fluxes in megacities.


Sign in / Sign up

Export Citation Format

Share Document