scholarly journals <i>Swarm</i> field-aligned currents during a severe magnetic storm of September 2017

2019 ◽  
Author(s):  
Renata Lukianova

Abstract. Swarm satellites observations are used to characterize the extreme behavior of large- and small-scale field-aligned currents (FACs) during the severe magnetic storm of September 2017. Evolution of the current intensities and the equatorward displacement of FACs are analyzed while the satellites cross the pre-midnight, pre-noon, dusk and dawn sectors in both hemispheres. The equatorward boundaries of FACs mainly follow the dynamics of ring current (as monitored in terms of the SYM-H index). The minimum latitude of the FAC boundaries is limited to 50° MLat, below which saturation occurs. The FAC densities are very variable and may increase dramatically, especially in the nightside ionosphere during the storm-time substorms. At the peak of substorm, the average FAC densities reach 3 μA/m2, while the quite level is below 0.1 μA/m2. The dawn–dusk asymmetry is manifested in the enhanced dusk-side R2 FACs in both hemispheres. Filamentary high-density structures are always observed confirming that a substantial fraction of R1/R2 FACs is composed of many small-scale currents. In the pre-noon sector, the bipolar structures (7.5 km width FACs of opposite polarities adjacent to each other) dominate, while in the post-midnight sector the upward and downward FACs tend to form more latitudinally extended structures of a certain polarity. The most intense small-scale FACs (up to ~80 μA/m2) is observed just in the post-midnight sector. Simultaneous magnetic and plasma perturbations indicate that this structure is likely a current system of a mesoscale auroral arc.

2020 ◽  
Vol 38 (1) ◽  
pp. 191-206
Author(s):  
Renata Lukianova

Abstract. Swarm satellite observations are used to characterize the extreme behavior of large- and small-scale field-aligned currents (FACs) during the severe magnetic storm of September 2017. Evolutions of the current intensities and the equatorward displacement of FACs are analyzed while the satellites cross the pre-midnight, pre-noon, dusk and dawn sectors in both hemispheres. The equatorward boundaries of FACs mainly follow the dynamics of the ring current as monitored in terms of the SYM-H index. The minimum latitude of the FAC boundaries is limited to 50∘ magnetic latitude (MLat). The FAC densities are very variable and may increase dramatically, especially in the nightside ionosphere during the storm-time substorms. At the peak of substorms, the average FAC densities reach >3 µA m−2. The dawn–dusk asymmetry is manifested in the enhanced dusk-side R2 FACs in both hemispheres. In the 1 Hz data filamentary high-density structures are always observed. In the pre-noon sector, the bipolar structures (7.5 km width FACs of opposite polarities adjacent to each other) dominate, while at the other local times the upward and downward FACs tend to be latitudinally separated. The most intense small-scale FACs, up to ∼80 µA m−2, are observed just in the post-midnight sector. Simultaneous magnetic and plasma perturbations indicate that this structure is likely a current system of a mesoscale auroral arc.


2019 ◽  
Author(s):  
Yevhen Holubnyak ◽  
Willard Watney ◽  
Tiraz Birdie ◽  
Dana Wreath ◽  
George Tsoflias ◽  
...  

1996 ◽  
Vol 14 (6) ◽  
pp. 608-618 ◽  
Author(s):  
T. Iyemori ◽  
D. R. K. Rao

Abstract. In order to investigate the causal relationship between magnetic storms and substorms, variations of the mid-latitude geomagnetic indices, ASY (asymmetric part) and SYM (symmetric part), at substorm onsets are examined. Substorm onsets are defined by three different phenomena; (1) a rapid increase in the mid-latitude asymmetric-disturbance indices, ASY-D and ASY-H, with a shape of so-called `mid-latitude positive bay\\'; (2) a sharp decrease in the AL index; (3) an onset of Pi2 geomagnetic pulsation. The positive bays are selected using eye inspection and a pattern-matching technique. The 1-min-resolution SYM-H index, which is essentially the same as the hourly Dst index except in terms of the time resolution, does not show any statistically significant development after the onset of substorms; it tends to decay after the onset rather than to develop. It is suggested by a simple model calculation that the decay of the magnetospheric tail current after substorm onset is responsible for the decay of the Dst field. The relation between the IMF southward turning and the development of the Dst field is re-examined. The results support the idea that the geomagnetic storms and substorms are independent processes; that is, the ring-current development is not the result of the frequent occurrence of substorms, but that of enhanced convection caused by the large southward IMF. A substorm is the process of energy dissipation in the magnetosphere, and its contribution to the storm-time ring-current formation seems to be negligible. The decay of the Dst field after a substorm onset is explained by a magnetospheric energy theorem.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 215
Author(s):  
Na Cheng ◽  
Shuli Song ◽  
Wei Li

The ionosphere is a significant component of the geospace environment. Storm-induced ionospheric anomalies severely affect the performance of Global Navigation Satellite System (GNSS) Positioning, Navigation, and Timing (PNT) and human space activities, e.g., the Earth observation, deep space exploration, and space weather monitoring and prediction. In this study, we present and discuss the multi-scale ionospheric anomalies monitoring over China using the GNSS observations from the Crustal Movement Observation Network of China (CMONOC) during the 2015 St. Patrick’s Day storm. Total Electron Content (TEC), Ionospheric Electron Density (IED), and the ionospheric disturbance index are used to monitor the storm-induced ionospheric anomalies. This study finally reveals the occurrence of the large-scale ionospheric storms and small-scale ionospheric scintillation during the storm. The results show that this magnetic storm was accompanied by a positive phase and a negative phase ionospheric storm. At the beginning of the main phase of the magnetic storm, both TEC and IED were significantly enhanced. There was long-duration depletion in the topside ionospheric TEC during the recovery phase of the storm. This study also reveals the response and variations in regional ionosphere scintillation. The Rate of the TEC Index (ROTI) was exploited to investigate the ionospheric scintillation and compared with the temporal dynamics of vertical TEC. The analysis of the ROTI proved these storm-induced TEC depletions, which suppressed the occurrence of the ionospheric scintillation. To improve the spatial resolution for ionospheric anomalies monitoring, the regional Three-Dimensional (3D) ionospheric model is reconstructed by the Computerized Ionospheric Tomography (CIT) technique. The spatial-temporal dynamics of ionospheric anomalies during the severe geomagnetic storm was reflected in detail. The IED varied with latitude and altitude dramatically; the maximum IED decreased, and the area where IEDs were maximum moved southward.


2010 ◽  
Vol 28 (2) ◽  
pp. 381-393 ◽  
Author(s):  
L. Cai ◽  
S. Y. Ma ◽  
Y. L. Zhou

Abstract. Similar to the Dst index, the SYM-H index may also serve as an indicator of magnetic storm intensity, but having distinct advantage of higher time-resolution. In this study the NARX neural network has been used for the first time to predict SYM-H index from solar wind (SW) and IMF parameters. In total 73 time intervals of great storm events with IMF/SW data available from ACE satellite during 1998 to 2006 are used to establish the ANN model. Out of them, 67 are used to train the network and the other 6 samples for test. Additionally, the NARX prediction model is also validated using IMF/SW data from WIND satellite for 7 great storms during 1995–1997 and 2005, as well as for the July 2000 Bastille day storm and November 2001 superstorm using Geotail and OMNI data at 1 AU, respectively. Five interplanetary parameters of IMF Bz, By and total B components along with proton density and velocity of solar wind are used as the original external inputs of the neural network to predict the SYM-H index about one hour ahead. For the 6 test storms registered by ACE including two super-storms of min. SYM-H<−200 nT, the correlation coefficient between observed and NARX network predicted SYM-H is 0.95 as a whole, even as high as 0.95 and 0.98 with average relative variance of 13.2% and 7.4%, respectively, for the two super-storms. The prediction for the 7 storms with WIND data is also satisfactory, showing averaged correlation coefficient about 0.91 and RMSE of 14.2 nT. The newly developed NARX model shows much better capability than Elman network for SYM-H prediction, which can partly be attributed to a key feedback to the input layer from the output neuron with a suitable length (about 120 min). This feedback means that nearly real information of the ring current status is effectively directed to take part in the prediction of SYM-H index by ANN. The proper history length of the output-feedback may mainly reflect on average the characteristic time of ring current decay which involves various decay mechanisms with ion lifetimes from tens of minutes to tens of hours. The Elman network makes feedback from hidden layer to input only one step, which is of 5 min for SYM-H index in this work and thus insufficient to catch the characteristic time length.


1985 ◽  
Vol 12 (5) ◽  
pp. 329-332 ◽  
Author(s):  
S. M. Krimigis ◽  
G. Gloeckler ◽  
R. W. McEntire ◽  
T. A. Potemra ◽  
F. L. Scarf ◽  
...  
Keyword(s):  

2003 ◽  
Vol 21 (3) ◽  
pp. 661-669 ◽  
Author(s):  
E. J. Bunce ◽  
S. W. H. Cowley

Abstract. We examine the residual (measured minus internal) magnetic field vectors observed in Saturn’s magnetosphere during the Pioneer-11 fly-by in 1979, and compare them with those observed during the Voyager-1 and -2 fly-bys in 1980 and 1981. We show for the first time that a ring current system was present within the magnetosphere during the Pioneer-11 encounter, which was qualitatively similar to those present during the Voyager fly-bys. The analysis also shows, however, that the ring current was located closer to the planet during the Pioneer-11 encounter than during the comparable Voyager-1 fly-by, reflecting the more com-pressed nature of the magnetosphere at the time. The residual field vectors have been fit using an adaptation of the current system proposed for Jupiter by Connerney et al. (1981a). A model that provides a reasonably good fit to the Pioneer-11 Saturn data extends radially between 6.5 and 12.5 RS (compared with a noon-sector magnetopause distance of 17 RS), has a north-south extent of 4 RS, and carries a total current of 9.6 MA. A corresponding model that provides a qualitatively similar fit to the Voyager data, determined previously by Connerney et al. (1983), extends radially between 8 and 15.5 RS (compared with a noon-sector magnetopause distance for Voyager-1 of 23–24 RS), has a north-south extent of 6 RS, and carries a total current of 11.5 MA.Key words. Magnetospheric physics (current systems, magnetospheric configuration and dynamics, planetary magnetospheres)


2020 ◽  
Vol 6 (1) ◽  
pp. 43-50
Author(s):  
Roman Boroev ◽  
Mikhail Vasiliev

In this study, we examine the relationship of the ASY-H index characterizing the partial ring current intensity with interplanetary medium parameters and auroral activity during the main phase of magnetic storms, induced by the solar wind (SW) of different types. Over the period 1979–2017, 107 magnetic storms driven by CIR and ICME (MC + Ejecta) events have been selected. We consider magnetic storms with Dstmin≤ – 50 nT. The average ASY-H index (ASYaver) during the magnetic storm main phase is shown to increase with increasing SW electric field and southward IMF Bz regardless of SW type. There is no relationship between ASYaver and SW velocity. For the CIR and ICME events, the average AE (AEaver) and Kp (Kp aver) indices have been found to correlate with ASYaver. The highest correlation coefficient between AEaver and ASYaver (r = 0.74) is observed for the magnetic storms generated by CIR events. A closer relationship between Kp aver and ASYaver (r = 0.64) is observed for the magnetic storms induced by ICME events. The ASYaver variations correlate with Dstmin. The relationship between ASYaver and the rate of storm development is weak.


2021 ◽  
Vol 37 (4) ◽  
pp. 242-249
Author(s):  
Eva A. Buckner ◽  
Katie F. Williams ◽  
Samantha Ramirez ◽  
Constance Darrisaw ◽  
Juliana M. Carrillo ◽  
...  

ABSTRACT Aedes aegypti is the predominant vector of dengue, chikungunya, and Zika viruses. This mosquito is difficult to control with conventional methods due to its container-inhabiting behavior and resistance to insecticides. Autodissemination of pyriproxyfen (PPF), a potent larvicide, has shown promise as an additional tool to control Aedes species in small-scale field trials. However, few large-scale field evaluations have been conducted. We undertook a 6-month-long large-scale field study to compare the effectiveness and operational feasibility of using In2Care Mosquito Traps (In2Care Traps, commercially available Aedes traps with PPF and Beauveria bassiana) compared to an integrated vector management (IVM) strategy consisting of source reduction, larviciding, and adulticiding for controlling Ae. aegypti eggs, larvae, and adults. We found that while the difference between treatments was only statistically significant for eggs and larvae (P &lt; 0.05 for eggs and larvae and P &gt; 0.05 for adults), the use of In2Care Traps alone resulted in 60%, 57%, and 57% fewer eggs, larvae, and adults, respectively, collected from that site compared to the IVM site. However, In2Care Trap deployment and maintenance were more time consuming and labor intensive than the IVM strategy. Thus, using In2Care Traps alone as a control method for large areas (e.g., &gt;20 ha) may be less practical for control programs with the capacity to conduct ground and aerial larviciding and adulticiding. Based on our study results, we conclude that In2Care Traps are effective at suppressing Ae. aegypti and have the most potential for use in areas without sophisticated control programs and within IVM programs to target hotspots with high population levels and/or risk of Aedes-borne pathogen transmission.


Sign in / Sign up

Export Citation Format

Share Document