scholarly journals Magnetosheath plasma flow model around Mercury

2021 ◽  
Author(s):  
Daniel Schmid ◽  
Ferdinand Plaschke ◽  
Yasuhito Narita ◽  
Martin Volwerk ◽  
Rumi Nakamura ◽  
...  

Abstract. The magnetosheath is defined as the plasma region between the bow shock, where the super-magnetosonic solar wind plasma is decelerated and heated, and the outer boundary of the intrinsic planetary magnetic field, the so called magnetopause. Based on the Soucek-Escoubet magnetosheath flow model at Earth, we present the first analytical magnetosheath plasma flow model for Mercury. It can be used to estimate the plasma flow magnitude and direction at any given point in the magnetosheath exclusively on the basis of the plasma parameters of the upstream solar wind. The aim of this paper is to provide a tool to back-trace the magnetosheath plasma flow between multiple observation points or from a given spacecraft location to the bow shock.

2021 ◽  
Vol 39 (3) ◽  
pp. 563-570
Author(s):  
Daniel Schmid ◽  
Yasuhito Narita ◽  
Ferdinand Plaschke ◽  
Martin Volwerk ◽  
Rumi Nakamura ◽  
...  

Abstract. The magnetosheath is defined as the plasma region between the bow shock, where the super-magnetosonic solar wind plasma is decelerated and heated, and the outer boundary of the intrinsic planetary magnetic field, the so-called magnetopause. Based on the Soucek–Escoubet magnetosheath flow model at the Earth, we present an analytical magnetosheath plasma flow model around Mercury. The model can be used to estimate the plasma flow magnitude and direction at any given point in the magnetosheath exclusively on the basis of the plasma parameters of the upstream solar wind. The model serves as a useful tool to trace the magnetosheath plasma along the streamline both in a forward sense (away from the shock) and a backward sense (toward the shock), offering the opportunity of studying the growth or damping rate of a particular wave mode or evolution of turbulence energy spectra along the streamline in view of upcoming arrival of BepiColombo at Mercury.


2020 ◽  
Author(s):  
Harald Kucharek ◽  
Matthew Young ◽  
Noe Lugaz ◽  
Charles Farrugia ◽  
Steven Schwartz ◽  
...  

<p>Turbulent fluctuations in the magnetic field and in the bulk plasma parameters of the solar wind have important effects on the propagation and evolution of energetic particles throughout the heliosphere and on the coupling of the solar wind to the Earth's magnetosphere. At the shock the solar wind kinetic energy is converted into downstream plasma heating, ion reflection and acceleration. Changes in upstream plasma conditions can result in changes in the dynamics of the shock, its structure, and the suprathermal ion population it generates. These upstream variations can be due to transients, interplanetary shocks, and other discontinuities. They can also result from nonlinear interactions, causing an intermittent energy dissipation and leading to possible currents sheet structures. A number of these events can be found in observations from STEREO (for interplanetary traveling shocks) and CLUSTER/MMS (for the Earth’s bow shock) in the magnetosheath. </p><p>We performed 3D-hybrid simulations to study the effects of spatially confined disturbances, such as density enhancements, depletions, and current layers/sheets and studied the shock dynamics, and the energetic particle release at various distances from the bow shock. The results of these simulations are then discussed in terms of multi-spacecraft observations in the magnetosheath at various scales.  The results show that shock reformation is highly impacted by density depressions/enhancements and so is the generation of waves and suprathermal ions. Also, upstream solar wind variations can alter the shock properties considerably at the various virtual spacecraft in the simulations.</p>


2021 ◽  
Author(s):  
Anna Salohub ◽  
Jana Šafránková ◽  
Zdeněk Němeček

<p>The foreshock is a region filled with a turbulent plasma located upstream the Earth’s bow shock where interplanetary magnetic field (IMF) lines are connected to the bow shock surface. In this region, ultra-low frequency (ULF) waves are generated due to the interaction of the solar wind plasma with particles reflected from the bow shock back into the solar wind. It is assumed that excited waves grow and they are convected through the solar wind/foreshock, thus the inner spacecraft (close to the bow shock) would observe larger wave amplitudes than the outer (far from the bow shock) spacecraft. The paper presents a statistical analysis of excited ULF fluctuations observed simultaneously by two closely separated THEMIS spacecraft orbiting the Moon under a nearly radial IMF. We found that ULF fluctuations (in the plasma rest frame) can be characterized as a mixture of transverse and compressional modes with different properties at both locations. We discuss the growth and/or damping of ULF waves during their propagation.</p>


2021 ◽  
Author(s):  
Harlan Spence ◽  
Kristopher Klein ◽  
HelioSwarm Science Team

<p>Recently selected for phase A study for NASA’s Heliophysics MidEx Announcement of Opportunity, the HelioSwarm Observatory proposes to transform our understanding of the physics of turbulence in space and astrophysical plasmas by deploying nine spacecraft to measure the local plasma and magnetic field conditions at many points, with separations between the spacecraft spanning MHD and ion scales.  HelioSwarm resolves the transfer and dissipation of turbulent energy in weakly-collisional magnetized plasmas with a novel configuration of spacecraft in the solar wind. These simultaneous multi-point, multi-scale measurements of space plasmas allow us to reach closure on two science goals comprised of six science objectives: (1) reveal how turbulent energy is transferred in the most probable, undisturbed solar wind plasma and distributed as a function of scale and time; (2) reveal how this turbulent cascade of energy varies with the background magnetic field and plasma parameters in more extreme solar wind environments; (3) quantify the transfer of turbulent energy between fields, flows, and ion heat; (4) identify thermodynamic impacts of intermittent structures on ion distributions; (5) determine how solar wind turbulence affects and is affected by large-scale solar wind structures; and (6) determine how strongly driven turbulence differs from that in the undisturbed solar wind. </p>


2018 ◽  
Vol 145 ◽  
pp. 03003
Author(s):  
Polya Dobreva ◽  
Monio Kartalev ◽  
Olga Nitcheva ◽  
Natalia Borodkova ◽  
Georgy Zastenker

We investigate the behaviour of the plasma parameters in the magnetosheath in a case when Interball-1 satellite stayed in the magnetosheath, crossing the tail magnetopause. In our analysis we apply the numerical magnetosheath-magnetosphere model as a theoretical tool. The bow shock and the magnetopause are self-consistently determined in the process of the solution. The flow in the magnetosheath is governed by the Euler equations of compressible ideal gas. The magnetic field in the magnetosphere is calculated by a variant of the Tsyganenko model, modified to account for an asymmetric magnetopause. Also, the magnetopause currents in Tsyganenko model are replaced by numericaly calulated ones. Measurements from WIND spacecraft are used as a solar wind monitor. The results demonstrate a good agreement between the model-calculated and measured values of the parameters under investigation.


2003 ◽  
Vol 21 (6) ◽  
pp. 1331-1339 ◽  
Author(s):  
H. A. Elliott ◽  
D. J. McComas ◽  
P. Riley

Abstract. Comparison of solar wind observations from the ACE spacecraft, in the ecliptic plane at ~ 1 AU, and the Ulysses spacecraft as it orbits over the Sun’s poles, provides valuable information about the latitudinal extent and variation of solar wind structures in the heliosphere. While qualitative comparisons can be made using average properties observed at these two locations, the comparison of specific, individual structures requires a procedure to determine if a given structure has been observed by both spacecraft. We use a 1-D hydrodynamic code to propagate ACE plasma measurements out to the distance of Ulysses and adjust for the differing longitudes of the ACE and Ulysses spacecraft. In addition to comparing the plasma parameters and their characteristic profiles, we examine suprathermal electron measurements and magnetic field polarity to help determine if the same features are encountered at both ACE and Ulysses. The He I l 1083 nm coronal hole maps are examined to understand the global structure of the Sun during the time of our heliospheric measurements. We find that the same features are frequently observed when both spacecraft are near the ecliptic plane. Stream structures derived from smaller coronal holes during the rising phase of solar cycle 23 persists over 20°–30° in heliolatitude, consistent with their spatial scales back at the Sun.Key words. Interplanetary physics (solar wind plasma)


Author(s):  
Liudmila Rakhmanova ◽  
Maria Riazantseva ◽  
Georgy Zastenker

Crossing the Earth’s bow shock is known to crucially affect solar wind plasma including changes in turbulent cascade. The present review summarizes results of more than 15 years of experimental exploration into magnetosheath turbulence. Great contributions to understanding turbulence development inside the magnetosheath was made by means of recent multi-spacecraft missions. We introduce the main results provided by them together with first observations of the turbulent cascade based on direct plasma measurements by the Spektr-R spacecraft in the magnetosheath. Recent results on solar wind effects on turbulence in the magnetosheath are also discussed.


2011 ◽  
Vol 29 (1) ◽  
pp. 31-46 ◽  
Author(s):  
S. Baraka ◽  
L. Ben-Jaffel

Abstract. We present a follow up study of the sensitivity of the Earth's magnetosphere to solar wind activity using a particles-in-cell model (Baraka and Ben Jaffel, 2007), but here during northward Interplanetary Magnetic Field (IMF). The formation of the magnetospheric cavity and its elongation around the planet is obtained with the classical structure of a magnetosphere with parallel lobes. An impulsive disturbance is then applied to the system by changing the bulk velocity of the solar wind to simulate a decrease in the solar wind dynamic pressure followed by its recovery. In response to the imposed drop in the solar wind velocity, a gap (abrupt depression) in the incoming solar wind plasma appears moving toward the Earth. The gap's size is a ~15 RE and is comparable to the sizes previously obtained for both Bz<0 and Bz=0. During the initial phase of the disturbance along the x-axis, the dayside magnetopause (MP) expands slower than the previous cases of IMF orientations as a result of the abrupt depression. The size of the MP expands nonlinearly due to strengthening of its outer boundary by the northward IMF. Also, during the initial 100 Δt, the MP shrank down from 13.3 RE to ~9.2 RE before it started expanding, a phenomenon that was also observed for southern IMF conditions but not during the no IMF case. As soon as they felt the solar wind depression, cusps widened at high altitude while dragged in an upright position. For the field's topology, the reconnection between magnetospheric and magnetosheath fields is clearly observed in both the northward and southward cusps areas. Also, the tail region in the northward IMF condition is more confined, in contrast to the fishtail-shape obtained in the southward IMF case. An X-point is formed in the tail at ~110 RE compared to ~103 RE and ~80 RE for Bz=0 and Bz<0, respectively. Our findings are consistent with existing reports from many space observatories (Cluster, Geotail, Themis, etc.) for which predictions are proposed to test furthermore our simulation technique.


Sign in / Sign up

Export Citation Format

Share Document