scholarly journals Maps of <I>fo</I>F2, <I>hm</I>F2, and plasma frequency above F2-layer peak in the night-time low-latitude ionosphere derived from Intercosmos-19 satellite topside sounding data

2007 ◽  
Vol 25 (8) ◽  
pp. 1827-1835 ◽  
Author(s):  
G. F. Deminova

Abstract. Maps of foF2, hmF2, and plasma frequency, fp, in the topside ionosphere at low latitudes, derived from Intercosmos-19 satellite topside sounding data, obtained from March 1979 to January 1981 and covering all longitudes, are presented for quiet geomagnetic conditions in June and December solstices at solar maximum for several local time intervals during the night. Based on these maps, features of the equatorial anomaly (EA) at different longitudes and their change during the night are considered. The maps show that averaged foF2, hmF2, and fp longitudinal variations are rather complicated, their structure looks wave-like with quasi-periods in longitude of about 75–100°, similar to that on individual days revealed previously at low latitudes using Intercosmos-19 data. Positions of the structure extrema in certain longitude intervals are stable enough so that they are clearly seen in the maps after averaging over a large number of measurements made on different days and even in different years. Such structure seems to need at least five harmonics for its description. The maps derived from Intercosmos-19 data were compared with the maps given by the IRI model. Along with general resemblance, essential distinctions between them were found. Intercosmos-19 maps show more complicated and pronounced longitudinal structure than IRI maps. They also show that at solar maximum, in general, at night, EA is stronger and persists for a longer time (on average, until 04:00 LT) than that presented in IRI model. Besides, much stronger asymmetry between the characteristics of the EA northern and southern crests in certain longitude intervals was revealed, most evident in hmF2 maps.

2006 ◽  
Vol 6 (5) ◽  
pp. 817-823 ◽  
Author(s):  
I. E. Zakharenkova ◽  
A. Krankowski ◽  
I. I. Shagimuratov

Abstract. This paper investigates the features of pre-earthquake ionospheric anomalies in the total electron content (TEC) data obtained on the basis of regular GPS observations from the IGS network. For the analysis of the ionospheric effects of the 26 December 2004 Indonesian earthquake, global TEC maps were used. The possible influence of the earthquake preparation processes on the main low-latitude ionosphere peculiarity – the equatorial anomaly – is discussed. Analysis of the TEC maps has shown that modification of the equatorial anomaly occurred a few days before the earthquake. For 2 days prior to the event, a positive effect was observed in the daytime amplification of the equatorial anomaly. Maximal enhancement in the crests reached 20 TECU (50–60%) relative to the non-disturbed state. In previous days, during the evening and night hours (local time), a specific transformation of the TEC distribution had taken place. This modification took the shape of a double-crest structure with a trough near the epicenter, though usually in this time the restored normal latitudinal distribution with a maximum near the magnetic equator is observed. It is assumed that anomalous electric field generated in the earthquake preparation zone could cause a near-natural "fountain-effect" phenomenon and might be a possible cause of the observed ionospheric anomaly.


2009 ◽  
Vol 114 (A4) ◽  
pp. n/a-n/a ◽  
Author(s):  
Kyoung Min ◽  
Jaeheung Park ◽  
Heejun Kim ◽  
Vitaly Kim ◽  
Hyosub Kil ◽  
...  

2006 ◽  
Vol 24 (5) ◽  
pp. 1333-1342 ◽  
Author(s):  
M. Milla ◽  
E. Kudeki

Abstract. The ALTAIR UHF radar was used in an incoherent scatter experiment to observe the low-latitude ionosphere during the Equis 2 rocket campaign. The measurements provided the first high-resolution electron density maps of the low-latitude D- and E-region in the Pacific sector and also extended into the F-region and topside ionosphere. Although the sampling frequency was well below the Nyquist frequency of F-region returns, we were able to estimate Te / Ti ratio and infer unbiased electron density estimates using a regularized inversion technique described here. The technique exploits magnetic aspect angle dependence of ISR cross-section for Te>Ti.


1996 ◽  
Vol 101 (A8) ◽  
pp. 17191-17205 ◽  
Author(s):  
Y. Z. Su ◽  
K.-I. Oyama ◽  
G. J. Bailey ◽  
S. Fukao ◽  
T. Takahashi ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Cesar E. Valladares ◽  
Matthew A. Hei

This scientific report presents the results of a dedicated experiment that was conducted within the framework of the Low-latitude ionospheric Sensor Network (LISN) observatory to measure the characteristics of medium-scale (hundreds of km) Traveling Ionospheric Disturbances (TIDs) as they transit through the low-latitude ionosphere. A small array of 3 GPS receivers separated by 4-5 km placed in a triangular configuration was installed near Huancayo in Peru possessing several characteristics of a radio-interferometer. During the campaign days, 17–30 July 2008, TIDs were observed daily. On July 20, 2008 between 22 and 24 UT several TIDs moved across the small array of GPS receivers with a velocity near 130 m/s, were directed northward and had wavelengths close to 450 km. Other GPS receivers that were operating hundreds of km away from Huancayo show also similar TEC traces and provide a phase velocity equal to 150 m/s. This value was measured using the GPS at Piura, Cuzco and Huancayo. Based on this positive result, we conclude that small and/or regional arrays of GPS receivers can be used at low latitudes to study the role that gravity waves may have on seeding plasma bubbles.


2005 ◽  
Vol 23 (7) ◽  
pp. 2449-2456 ◽  
Author(s):  
N. Dashora ◽  
R. Pandey

Abstract. A GSV 4004A GPS receiver has been operational near the crest of the equatorial anomaly at Udaipur, India for some time now. The receiver provides the line-of-sight total electron content (TEC), the phase and amplitude scintillation index, σφ and S4, respectively. This paper presents the first results on the nighttime TEC depletions associated with the equatorial spread F in the Indian zone. The TEC depletions are found to be very well correlated with the increased S4 index. A new feature of low-latitude TEC is also reported, concerning the observation of isolated and localized TEC enhancements in the nighttime low-latitude ionosphere. The TEC enhancements are not correlated with the S4 index. The TEC enhancements have also been observed along with the TEC depletions. The TEC enhancements have been interpreted as the manifestation of the plasma density enhancements reported by Le et al. (2003). Keywords. Ionosphere (Equatorial ionosphere; Ionospheric irregularities)


2009 ◽  
Vol 27 (3) ◽  
pp. 1175-1187 ◽  
Author(s):  
E. Astafyeva

Abstract. Dayside ionospheric response to five intense geomagnetic storms (Dst<−120 nT) that occurred in 2001–2005 was investigated by use of simultaneous TEC measurements by the CHAMP, SAC-C, TOPEX/Jason-1 satellites. Since the satellites passed over different longitudinal sectors and measured TEC in different range of altitudes, it was possible to obtain information about altitudinal and longitudinal ionosphere redistribution during these storms. Severe enhancements (up to ~350%) of the equatorial and mid-latitude TEC above ~430 km with concurrent traveling of the equatorial anomaly crests for a distance of 10–15° of latitude were observed during two of the five events analyzed here (6 November 2001 and 8 November 2004). This phenomenon, known as the dayside ionosphere uplift, or the "daytime super-fountain effect", occurred after sudden drop in IMF Bz and consequent penetration of the electric fields to the low-latitude ionosphere. However, the same order Bz negative events caused comparatively weak changes in the dayside TEC (up to ~80 TECU) during the other three events of 18 June 2003, 11 February 2004 and 24 August 2005. At the main phase of these storms there were mostly observed formation of the "typical" dual peak structure of the equatorial anomaly rather than the reinforcement of the fountain effect and the anomaly itself. Possible reasons and factors responsible for the development of the extreme ionosphere effects are discussed in the paper.


Sign in / Sign up

Export Citation Format

Share Document