scholarly journals Contrasted Saharan dust events in LNLC environments: impact on nutrient dynamics and primary production

2014 ◽  
Vol 11 (17) ◽  
pp. 4783-4800 ◽  
Author(s):  
C. Ridame ◽  
J. Dekaezemacker ◽  
C. Guieu ◽  
S. Bonnet ◽  
S. L'Helguen ◽  
...  

Abstract. The response of the phytoplanktonic community (primary production and algal biomass) to contrasted Saharan dust events (wet and dry deposition) was studied in the framework of the DUNE ("a DUst experiment in a low-Nutrient, low-chlorophyll Ecosystem") project. We simulated realistic dust deposition events (10 g m−2) into large mesocosms (52 m3). Three distinct dust addition experiments were conducted in June 2008 (DUNE-1-P: simulation of a wet deposition; DUNE-1-Q: simulation of a dry deposition) and 2010 (DUNE-2-R1 and DUNE-2-R2: simulation of two successive wet depositions) in the northwestern oligotrophic Mediterranean Sea. No changes in primary production (PP) and chlorophyll a concentrations (Chl a) were observed after a dry deposition event, while a wet deposition event resulted in a rapid (24 h after dust addition), strong (up to 2.4-fold) and long (at least a week in duration) increase in PP and Chl a. We show that, in addition to being a source of dissolved inorganic phosphorus (DIP), simulated wet deposition events were also a significant source of nitrate (NO3−) (net increases up to +9.8 μM NO3− at 0.1 m in depth) to the nutrient-depleted surface waters, due to cloud processes and mixing with anthropogenic species such as HNO3. The dry deposition event was shown to be a negligible source of NO3−. By transiently increasing DIP and NO3- concentrations in N–P starved surface waters, wet deposition of Saharan dust was able to relieve the potential N or NP co-limitation of the phytoplanktonic activity. Due to the higher input of NO3− relative to DIP, and taking into account the stimulation of the biological activity, a wet deposition event resulted in a strong increase in the NO3−/DIP ratio, from initially less than 6, to over 150 at the end of the DUNE-2-R1 experiment, suggesting a switch from an initial N or NP co-limitation towards a severe P limitation. We also show that the contribution of new production to PP strongly increased after wet dust deposition events, from initially 15% to 60–70% 24 h after seeding, indicating a switch from a regenerated-production based system to a new-production based system. DUNE experiments show that wet and dry dust deposition events induce contrasting responses of the phytoplanktonic community due to differences in the atmospheric supply of bioavailable new nutrients. Our results from original mesocosm experiments demonstrate that atmospheric dust wet deposition greatly influences primary productivity and algal biomass in LNLC environments through changes in the nutrient stocks, and alters the NO3−/DIP ratio, leading to a switch in the nutrient limitation of the phytoplanktonic activity.

2014 ◽  
Vol 11 (1) ◽  
pp. 753-796 ◽  
Author(s):  
C. Ridame ◽  
J. Dekaezemacker ◽  
C. Guieu ◽  
S. Bonnet ◽  
S. L'Helguen ◽  
...  

Abstract. The response of the phytoplanktonic community (primary production and algal biomass) to contrasted Saharan dust events (wet and dry deposition) was studied in the framework of the DUNE "a DUst experiment in a low-Nutrient, low-chlorophyll Ecosystem" project. We simulated realistic dust deposition events (10 g m−2) into large mesocosms (52 m3). Three distinct experimental dust additions were conducted in June 2008 (DUNE-1-P: simulation of a wet deposition, DUNE-1-Q: simulation of a dry deposition) and 2010 (DUNE-2-R1, -R2: simulation of 2 successive wet depositions) in the northwestern oligotrophic Mediterranean Sea. No changes in primary production (PP) and chlorophyll a concentration (Chl a) were observed after a dry deposition event while a wet deposition event resulted in a rapid (24 h after dust additions), strong (up 2.4 fold) and long (at least a week duration) increase in PP and Chl a. We show that in addition to being a source of dissolved inorganic phosphorus (DIP), simulated wet deposition events were also a significant source of NO3− (net increases up to +9.8 μM NO3− at 0.1 m depth) to the nutrient depleted surface waters due to cloud processes and mixing with anthropogenic species such as HNO3. The dry deposition event was shown to be a negligible source of NO3−. By transiently increasing DIP and NO3− concentrations in P-N starved surface waters, wet deposition of Saharan dust was able to relieve the potential N or NP co-limitation of the phytoplanktonic activity. Due to the higher input of NO3− relative to DIP, a wet deposition event resulted in a strong increase in the NO3−/DIP ratio from initially < 6 to over 150 at the end of the DUNE-2-R1 experiment suggesting a switch from an initial N or NP co-limitation towards a severe P limitation. We also show that the contribution of new production to PP increased after wet dust deposition events from initially 15% to 60–70% 24 h after seeding, indicating a switch from a regenerated-production based system to a new-production based system. DUNE experiments show that wet and dry dust deposition events induce contrasted responses of the phytoplanktonic community due to differences in the atmospheric supply of bioavailable new nutrients. Our results from original mesocosm experiments demonstrate that atmospheric dust wet deposition greatly influences primary productivity and algal biomass in LNLC environments, changes nutrient stocks and alters the NO3−/DIP ratio leading to a switch in the nutrient limitation of the phytoplanktonic activity.


2013 ◽  
Vol 10 (11) ◽  
pp. 7333-7346 ◽  
Author(s):  
C. Ridame ◽  
C. Guieu ◽  
S. L'Helguen

Abstract. The response of N2 (dinitrogen) fixation to contrasted (wet and dry) Saharan dust deposition was studied in the framework of the DUNE project (a DUst experiment in a low-Nutrient, low-chlorophyll Ecosystem) during which realistic simulations of dust deposition (10 g m−2) into large mesocosms (52 m3) were performed. Three distinct experimental dust additions were conducted in June 2008 (DUNE-1-P: simulation of a wet deposition, DUNE-1-Q: simulation of a dry deposition) and 2010 (DUNE-2-R: simulation of 2 successive wet depositions) in the northwestern oligotrophic Mediterranean Sea. Here we show that wet and dry dust deposition induced a rapid (24 h or 48 h after dust additions), strong (from 2- to 5.3-fold) and long (at least 4–6 days duration) increase in N2 fixation, indicating that both wet and dry Saharan dust deposition was able to relieve efficiently the nutrient limitation(s) of N2 fixation. This means in particular that N2 fixation activity was not inhibited by the significant input of nitrate associated with the simulated wet deposition (~ 9 mmol NO3− m−2). The input of new nitrogen associated with N2 fixation was negligible relative to the atmospheric NO3− input associated with the dust. The contribution of N2 fixation to primary production was negligible (≤ 1%) before and after dust addition in all experiments, indicating that N2 fixation was a poor contributor to the nitrogen demand for primary production. Despite the stimulation of N2 fixation by dust addition, the rates remained low, and did not significantly change the contribution of N2 fixation to new production since only a maximum contribution of 10% was observed. The response of N2 fixation by diazotrophs and CO2 fixation by the whole phytoplankton community suggests that these metabolic processes were limited or co-limited by different nutrients. With this novel approach, which allows us to study processes as a function of time while atmospheric particles are sinking, we show that new atmospheric nutrients associated with Saharan dust pulses do significantly stimulate N2 fixation in the Mediterranean Sea and that N2 fixation is not a key process in the carbon cycle in such oligotrophic environments.


2014 ◽  
Vol 11 (2) ◽  
pp. 425-442 ◽  
Author(s):  
C. Guieu ◽  
F. Dulac ◽  
C. Ridame ◽  
P. Pondaven

Abstract. The main goal of project DUNE was to estimate the impact of atmospheric deposition on an oligotrophic ecosystem based on mesocosm experiments simulating strong atmospheric inputs of eolian mineral dust. Our mesocosm experiments aimed at being representative of real atmospheric deposition events onto the surface of oligotrophic marine waters and were an original attempt to consider the vertical dimension after atmospheric deposition at the sea surface. This introductory paper describes the objectives of DUNE and the implementation plan of a series of mesocosm experiments conducted in the Mediterranean Sea in 2008 and 2010 during which either wet or dry and a succession of two wet deposition fluxes of 10 g m−2 of Saharan dust have been simulated based on the production of dust analogs from erodible soils of a source region. After the presentation of the main biogeochemical initial conditions of the site at the time of each experiment, a general overview of the papers published in this special issue is presented. From laboratory results on the solubility of trace elements in dust to biogeochemical results from the mesocosm experiments and associated modeling, these papers describe how the strong simulated dust deposition events impacted the marine biogeochemistry. Those multidisciplinary results are bringing new insights into the role of atmospheric deposition on oligotrophic ecosystems and its impact on the carbon budget. The dissolved trace metals with crustal origin – Mn, Al and Fe – showed different behaviors as a function of time after the seeding. The increase in dissolved Mn and Al concentrations was attributed to dissolution processes. The observed decrease in dissolved Fe was due to scavenging on sinking dust particles and aggregates. When a second dust seeding followed, a dissolution of Fe from the dust particles was then observed due to the excess Fe binding ligand concentrations present at that time. Calcium nitrate and sulfate were formed in the dust analog for wet deposition following evapocondensation with acids for simulating cloud processing by polluted air masses under anthropogenic influence. Using a number of particulate tracers that were followed in the water column and in the sediment traps, it was shown that the dust composition evolves after seeding by total dissolution of these salts. This provided a large source of new dissolved inorganic nitrogen (DIN) in the surface waters. In spite of this dissolution, the typical inter-elemental ratios in the particulate matter, such as Ti / Al or Ba / Al, are not affected during the dust settling, confirming their values as proxies of lithogenic fluxes or of productivity in sediment traps. DUNE experiments have clearly shown the potential for Saharan wet deposition to modify the in situ concentrations of dissolved elements of biogeochemical interest such as Fe and also P and N. Indeed, wet deposition yielded a transient increase in dissolved inorganic phosphorus (DIP) followed by a very rapid return to initial conditions or no return to initial conditions when a second dust seeding followed. By transiently increasing DIP and DIN concentrations in P- and N-starved surface waters of the Mediterranean Sea, wet deposition of Saharan dust can likely relieve the potential P and/or N limitation of biological activity; this has been directly quantified in terms of biological response. Wet deposition of dust strongly stimulated primary production and phytoplanktonic biomass during several days. Small phytoplankton (< 3 μm) was more stimulated after the first dust addition, whereas the larger size class (> 3 μm) significantly increased after the second one, indicating that larger-sized cells need further nutrient supply in order to be able to adjust their physiology and compete for resource acquisition and biomass increase. Among the microorganisms responding to the atmospheric inputs, diazotrophs were stimulated by both wet and dry atmospheric deposition, although N2 fixation was shown to be only responsible for a few percent of the induced new production. Dust deposition modified the bacterial community structure by selectively stimulating and inhibiting certain members of the bacterial community. The microbial food web dynamics were strongly impacted by dust deposition. The carbon budget indicates that the net heterotrophic character (i.e., ratio of net primary production to bacteria respiration < 1) of the tested waters remained (or was even increased) after simulated wet or dry deposition despite the significant stimulation of autotrophs after wet events. This indicates that the oligotrophic tested waters submitted to dust deposition are a net CO2 source. Nonetheless, the system was able to export organic material, half of it being associated with lithogenic particles through aggregation processes between lithogenic particles and organic matter. These observations support the "ballast" hypothesis and suggest that this "lithogenic carbon pump" could represent a major contribution of the global carbon export to deep waters in areas receiving high rates of atmospheric deposition. Furthermore, a theoretical microbial food web model showed that, all other things being equal, carbon, nitrogen and phosphorus stoichiometric mismatch along the food chain can have a substantial impact on the ecosystem response to nutrient inputs from dusts, with changes in the biomass of all biological compartments by a factor of ~ 2–4, and shifts from net autotrophy to net heterotrophy. Although the model was kept simple, it highlights the importance of stoichiometric constrains on the dynamics of microbial food webs.


2014 ◽  
Vol 11 (19) ◽  
pp. 5621-5635 ◽  
Author(s):  
C. Guieu ◽  
C. Ridame ◽  
E. Pulido-Villena ◽  
M. Bressac ◽  
K. Desboeufs ◽  
...  

Abstract. By bringing new nutrients and particles to the surface ocean, atmospheric deposition impacts biogeochemical cycles. The extent to which those changes are modifying the carbon balance in oligotrophic environments such as the Mediterranean Sea that receives important Saharan dust fluxes is unknown. The DUNE (DUst experiment in a low Nutrient, low chlorophyll Ecosystem) project provides the first attempt to evaluate the changes induced in the carbon budget of a large body of oligotrophic waters after simulated Saharan dust wet or dry deposition events, allowing us to measure (1) the metabolic fluxes while the particles are sinking and (2) the particulate organic carbon export. Here we report the results for the three distinct artificial dust seeding experiments simulating wet or dry atmospheric deposition onto large mesocosms (52 m3) that were conducted in the oligotrophic waters of the Mediterranean Sea in the summers of 2008 and 2010. Although heterotrophic bacteria were found to be the key players in the response to dust deposition, net primary production increased about twice in case of simulated wet deposition (that includes anthropogenic nitrogen). The dust deposition did not produce a shift in the metabolic balance as the tested waters remained net heterotrophic (i.e., net primary production to bacteria respiration ratio <1) and in some cases the net heterotrophy was even enhanced by the dust deposition. The change induced by the dust addition on the total organic carbon pool inside the mesocosm over the 7 days of the experiments, was a carbon loss dominated by bacteria respiration that was at least 5–10 times higher than any other term involved in the budget. This loss of organic carbon from the system in all the experiments was particularly marked after the simulation of wet deposition. Changes in biomass were mostly due to an increase in phytoplankton biomass but when considering the whole particulate organic carbon pool it was dominated by the organic carbon aggregated to the lithogenic particles still in suspension in the mesocosm at the end of the experiment. Assuming that the budget is balanced, the dissolved organic carbon (DOC) pool was estimated by the difference between the total organic carbon and the particulate organic carbon (POC) pool. The partitioning between dissolved and particulate organic carbon was dominated by the dissolved pool with a DOC consumption over 7 days of ∼1 μmol C L−1 d−1 (dry deposition) to ∼2–5 μmol C L−1 d−1 (wet deposition). This consumption in the absence of any allochthonous inputs in the closed mesocosms meant a small <10% decrease of the initial DOC stock after a dry deposition but a ∼30–40% decrease of the initial DOC stock after wet deposition. After wet deposition, the tested waters, although dominated by heterotrophy, were still maintaining a net export (corrected from controls) of particulate organic carbon (0.5 g in 7 days) even in the absence of allochthonous carbon inputs. This tentative assessment of the changes in carbon budget induced by a strong dust deposition indicates that wet deposition by bringing new nutrients has higher impact than dry deposition in oligotrophic environments. In the western Mediterranean Sea, the mineral dust deposition is dominated by wet deposition and one perspective of this work is to extrapolate our numbers to time series of deposition during similar oligotrophic conditions to evaluate the overall impact on the carbon budget at the event and seasonal scale in the surface waters of the northwestern Mediterranean Sea. These estimated carbon budgets are also highlighting the key processes (i.e., bacterial respiration) that need to be considered for an integration of atmospheric deposition in marine biogeochemical modeling.


2013 ◽  
Vol 10 (4) ◽  
pp. 2583-2600 ◽  
Author(s):  
K. Wuttig ◽  
T. Wagener ◽  
M. Bressac ◽  
A. Dammshäuser ◽  
P. Streu ◽  
...  

Abstract. The deposition of atmospheric dust is the primary process supplying trace elements abundant in crustal rocks (e.g. Al, Mn and Fe) to the surface ocean. Upon deposition, the residence time in surface waters for each of these elements differs according to their chemical speciation and biological utilization. Presently, however, the chemical and physical processes occurring after atmospheric deposition are poorly constrained, principally because of the difficulty in following natural dust events in situ. In the present work we examined the temporal changes in the biogeochemistry of crustal metals (in particular Al, Mn and Fe) after an artificial dust deposition event. The experiment was contained inside trace metal clean mesocosms (0–12.5 m depths) deployed in the surface waters of the northwestern Mediterranean, close to the coast of Corsica within the frame of the DUNE project (a DUst experiment in a low Nutrient, low chlorophyll Ecosystem). Two consecutive artificial dust deposition events, each mimicking a wet deposition of 10 g m−2 of dust, were performed during the course of this DUNE-2 experiment. The changes in dissolved manganese (Mn), iron (Fe) and aluminum (Al) concentrations were followed immediately after the seeding with dust and over the following week. The Mn, Fe and Al inventories and loss or dissolution rates were determined. The evolution of the inventories after the two consecutive additions of dust showed distinct behaviors for dissolved Mn, Al and Fe. Even though the mixing conditions differed from one seeding to the other, Mn and Al showed clear increases directly after both seedings due to dissolution processes. Three days after the dust additions, Al concentrations decreased as a consequence of scavenging on sinking particles. Al appeared to be highly affected by the concentrations of biogenic particles, with an order of magnitude difference in its loss rates related to the increase of biomass after the addition of dust. In the case of dissolved Fe, it appears that the first dust addition resulted in a decrease as it was scavenged by sinking dust particles, whereas the second seeding induced dissolution of Fe from the dust particles due to the excess Fe binding ligand concentrations present at that time. This difference, which might be related to a change in Fe binding ligand concentration in the mesocosms, highlights the complex processes that control the solubility of Fe. Based on the inventories at the mesocosm scale, the estimations of the fractional solubility of metals from dust particles in seawater were 1.44 &amp;pm; 0.19% and 0.91 ± 0.83% for Al and 41 ± 9% and 27 ± 19% for Mn for the first and the second dust addition. These values are in good agreement with laboratory-based estimates. For Fe no fractional solubility was obtained after the first seeding, but 0.12 ± 0.03% was estimated after the second seeding. Overall, the trace metal dataset presented here makes a significant contribution to enhancing our knowledge on the processes influencing trace metal release from Saharan dust and the subsequent processes of bio-uptake and scavenging in a low nutrient, low chlorophyll area.


2012 ◽  
Vol 9 (10) ◽  
pp. 13857-13897 ◽  
Author(s):  
K. Wuttig ◽  
T. Wagener ◽  
M. Bressac ◽  
A. Dammshäuser ◽  
P. Streu ◽  
...  

Abstract. The deposition of atmospheric dust is the primary process supplying trace elements abundant in crustal rocks (e.g. Al, Mn and Fe) to the surface ocean. Upon deposition, the residence time in surface waters for each of these elements differs according to their chemical speciation and biological utilization. Presently however their behavior after atmospheric deposition is poorly constrained, principally because of the difficulty in following natural dust events in-situ. In the present work we examined the temporal changes in the biogeochemistry of crustal metals (in particular Al, Mn and Fe) after an artificial dust deposition event. The experiment was contained inside trace metal clean mesocosms (0–12.5 m depths) deployed in the surface waters of the Northwestern Mediterranean, close to the coast of Corsica in the frame of the DUNE project (a DUst experiment in a low Nutrient low chlorophyll Ecosystem). Two consecutive artificial dust deposition events, each mimicking a wet deposition of 10 g m−2 of dust, were performed during the course of this DUNE-2 experiment. The changes in dissolved manganese (dMn), iron (dFe) and aluminium (dAl) concentrations were followed immediately and over the following week and their inventories and loss or dissolution rates were determined. The evolution of the inventories after the two consecutive additions of dust showed distinct behaviors for dMn, dAl and dFe. Even though the mixing conditions differed from one seeding to the other, dMn and dAl showed clear increases directly after both seedings due to dissolution processes. Three days after the dust additions, dAl concentrations decreased as a consequence of scavenging on sinking particles. dAl appeared to be highly affected by the concentrations of biogenic particles, with an order of magnitude difference in its loss rates related to the increase of biomass after the addition of dust. For dFe concentrations, the first dust addition decreased the concentrations through scavenging of the dust particles, whereas the second seeding induced dissolution of Fe from the dust particles. This difference, which might be related to a change in Fe-binding ligand concentration in the mesocosms, highlights the complex processes that control the solubility of Fe. Based on the inventories at the mesocosm scale, the estimations of solubility of metals from dust particles in seawater were 1% for Al and 40% for Mn which were in good agreement with laboratory based estimates. Overall, the trace metal dataset presented here makes a significant contribution to enhancing our knowledge on the processes influencing trace metals release from Saharan dust and the subsequent processes of bio-uptake and scavenging in a low nutrient low chlorophyll area.


2013 ◽  
Vol 10 (11) ◽  
pp. 17275-17307 ◽  
Author(s):  
G. Franchy ◽  
A. Ojeda ◽  
J. López-Cancio ◽  
S. Hernández-León

Abstract. The plankton community response to natural fertilization caused by the Saharan dust was studied in the Canary Islands waters during winter–spring 2010. For this, a weekly sampling was carried out to characterize the pico-, nano- and microplankton communities. During this period several dust events were identified from atmospheric suspended matter and metal composition. Temperatures above 19 °C in the mixed layer, high stratification and a very low concentration of chlorophyll a, indicated the absence of the characteristic late winter bloom during this year. However, relatively high primary production rates were measured, probably fuelled by nutrient release from the deposited atmospheric dust. In fact, this winter–spring was one of the most intense dust periods during the last years and Saharan dust events were identified in every month. The effect of the Saharan dust over the plankton community mainly consisted in the enhancement of primary producers, mostly diatoms, and the increase of the mesozooplankton stock, whereas cyanobacteria and autotrophic picoeukaryotes were negatively affected. These results suggest that the Saharan dust deposition would be partly fuelling the primary production in these oligotrophic waters of the northeast Atlantic, and could be especially significant during stratified periods, when the atmospheric dust would be the most important nutrient source.


2013 ◽  
Vol 13 (8) ◽  
pp. 21801-21835
Author(s):  
K. Osada ◽  
S. Ura ◽  
M. Kagawa ◽  
M. Mikami ◽  
T. Y. Tanaka ◽  
...  

Abstract. Data of temporal variations and spatial distributions of mineral dust deposition fluxes are very limited in terms of duration, location, and processes of deposition. To ascertain temporal variations and spatial distributions of mineral dust deposition by wet and dry processes, weekly deposition samples were obtained at Sapporo, Toyama, Nagoya, Tottori, Fukuoka, and Cape Hedo (Okinawa) in Japan during October 2008–December 2010 using automatic wet and dry separating samplers. Mineral dust weights in water-insoluble residue were estimated from Fe contents measured using an X-ray fluorescence analyzer. For wet deposition, highest and lowest annual dust fluxes were found at Toyama (9.6 g m−2 yr−1) and at Cape Hedo (1.7 g m−2 yr−1) as average values in 2009 and 2010. Higher wet deposition fluxes were observed at Toyama and Tottori, where frequent precipitation (>60% days per month) was observed during dusty seasons. For dry deposition among Toyama, Tottori, Fukuoka, and Cape Hedo, the highest and lowest annual dust fluxes were found respectively at Fukuoka (5.2 g m−2 yr−1) and at Cape Hedo (2.0 g m−2 yr−1) as average values in 2009 and 2010. Although the seasonal tendency of the monthly dry deposition amount roughly resembled that of monthly days of Kosa dust events, the monthly amount of dry deposition was not proportional to monthly days of the events. Comparison of dry deposition fluxes with vertical distribution of dust particles deduced from Lidar data and coarse particle concentrations suggested that the maximum dust layer height or thickness is an important factor for controlling the dry deposition amount after long-range transport of dust particles. Size distributions of refractory dust particles were obtained using four-stage filtration: >20, >10, >5, and >1 μm diameter. Weight fractions of the sum of >20 μm and 10–20 μm (giant fraction) were higher than 50% for most of the event samples. Irrespective of the deposition type, the giant dust fractions were decreasing generally with increasing distance from the source area, suggesting the selective depletion of larger giant particles during atmospheric transport. Because giant dust particles are an important mass fraction of dust accumulation, especially in the north Pacific where is known as a high-nutrient, low-chlorophyll (HNLC) region, the transport height of giant dust particles is an important factor for studying dust budgets in the atmosphere and their role in biogeochemical cycles.


2019 ◽  
Vol 16 (5) ◽  
pp. 999-1017 ◽  
Author(s):  
Debany Fonseca-Batista ◽  
Xuefeng Li ◽  
Virginie Riou ◽  
Valérie Michotey ◽  
Florian Deman ◽  
...  

Abstract. Diazotrophic activity and primary production (PP) were investigated along two transects (Belgica BG2014/14 and GEOVIDE cruises) off the western Iberian Margin and the Bay of Biscay in May 2014. Substantial N2 fixation activity was observed at 8 of the 10 stations sampled, ranging overall from 81 to 384 µmol N m−2 d−1 (0.7 to 8.2 nmol N L−1 d−1), with two sites close to the Iberian Margin situated between 38.8 and 40.7∘ N yielding rates reaching up to 1355 and 1533 µmol N m−2 d−1. Primary production was relatively lower along the Iberian Margin, with rates ranging from 33 to 59 mmol C m−2 d−1, while it increased towards the northwest away from the peninsula, reaching as high as 135 mmol C m−2 d−1. In agreement with the area-averaged Chl a satellite data contemporaneous with our study period, our results revealed that post-bloom conditions prevailed at most sites, while at the northwesternmost station the bloom was still ongoing. When converted to carbon uptake using Redfield stoichiometry, N2 fixation could support 1 % to 3 % of daily PP in the euphotic layer at most sites, except at the two most active sites where this contribution to daily PP could reach up to 25 %. At the two sites where N2 fixation activity was the highest, the prymnesiophyte–symbiont Candidatus Atelocyanobacterium thalassa (UCYN-A) dominated the nifH sequence pool, while the remaining recovered sequences belonged to non-cyanobacterial phylotypes. At all the other sites, however, the recovered nifH sequences were exclusively assigned phylogenetically to non-cyanobacterial phylotypes. The intense N2 fixation activities recorded at the time of our study were likely promoted by the availability of phytoplankton-derived organic matter produced during the spring bloom, as evidenced by the significant surface particulate organic carbon concentrations. Also, the presence of excess phosphorus signature in surface waters seemed to contribute to sustaining N2 fixation, particularly at the sites with extreme activities. These results provide a mechanistic understanding of the unexpectedly high N2 fixation in productive waters of the temperate North Atlantic and highlight the importance of N2 fixation for future assessment of the global N inventory.


Sign in / Sign up

Export Citation Format

Share Document