scholarly journals Quantifying functional consequences of habitat degradation on a Caribbean coral reef

2021 ◽  
Vol 18 (24) ◽  
pp. 6501-6516
Author(s):  
Alice E. Webb ◽  
Didier M. de Bakker ◽  
Karline Soetaert ◽  
Tamara da Costa ◽  
Steven M. A. C. van Heuven ◽  
...  

Abstract. Coral reefs are declining worldwide. The abundance of corals has decreased alongside a rise of filter feeders, turf, and algae in response to intensifying human pressures. This shift in prevalence of functional groups alters the biogeochemical processes in tropical water ecosystems, thereby influencing reef functioning. An urgent challenge is to understand the functional consequences of these shifts to develop suitable management strategies that aim at preserving the biological functions of reefs. Here, we quantify biogeochemical processes supporting key reef functions (i.e. net community calcification (NCC) and production (NCP) and nutrient recycling) in situ for five different benthic assemblages currently dominating shallow degraded Caribbean reef habitats. To this end, a transparent custom-made enclosure was placed over communities dominated by either one of five functional groups – coral, turf and macroalgae, bioeroding sponges, cyanobacterial mats, or sand – to determine chemical fluxes between these communities and the overlying water, during both day and night. To account for the simultaneous influence that distinct biogeochemical processes have on measured variables, the rates were then derived by solving a model consisting of differential equations describing the contribution of each process to the measured chemical fluxes. Inferred rates were low compared to those known for reef flats worldwide. Reduced accretion potential was recorded, with negative or very modest net community calcification rates for all communities. Net production during the day was also low, suggesting limited accumulation of biomass through photosynthesis and remineralisation of organic matter at night was relatively high in comparison, resulting in net heterotrophy over the survey period for most communities. Estimated recycling processes (i.e. nitrification and denitrification) were high but did not fully counterbalance nutrient release from aerobic mineralisation, rendering all substrates sources of nitrogen. Results suggest similar directions and magnitudes of key biogeochemical processes of distinct communities on this shallow Curaçaoan reef. We infer that the amount and type of organic matter released by abundant algal turfs and cyanobacterial mats on this reef likely enhances heterotroph activity and stimulates the proliferation of less diverse copiotrophic microbial populations, rendering the studied reef net heterotrophic and drawing the biogeochemical “behaviour” of distinct communities closer to each other.

2021 ◽  
Author(s):  
Alice E. Webb ◽  
Didier M. de Bakker ◽  
Karline Soetaert ◽  
Tamara da Costa ◽  
Steven M. A. C. van Heuven ◽  
...  

Abstract. Coral reefs are declining worldwide. The abundance of corals has decreased alongside the rise of filter feeders, turf and algae in response to intensifying human pressures. This shift in prevalence of functional groups alters the biogeochemical processes in tropical water ecosystems, thereby influencing reef biological functions. An urgent challenge is to understand the functional consequences of these shifts in order to develop suitable management strategies that aim at preserving the biological functions of reefs.Here, we quantify biogeochemical processes supporting key reef functions (i.e. net community calcification (NCC) and production (NCP), and nutrient recycling) in situ for five different benthic assemblages currently dominating shallow degraded Caribbean reef habitats. To this end, a custom made tent was placed over communities dominated by either one of five functional groups: coral, turf and macroalgae, bioeroding sponges, cyanobacterial mats or sand, to determine chemical fluxes between these communities and the overlying water, during both day and night. Measured fluxes were then translated into responsible biogeochemical processes by solving a system of differential equations describing the contribution of each process to the measured chemical fluxes. Estimated processes are low compared to those known for reef flats worldwide. No real gain in primary habitat is recorded, with negative or very modest net community calcification rates by all communities. Similarly, net production of biomass through photosynthesis is relatively low during the day and remineralisation of organic matter at night is relatively high in comparison, resulting in net heterotrophy over the survey period by most communities. Estimated recycling through nitrification and denitrification are high but denitrification does not fully counterbalance nutrient release from aerobic mineralisation, rendering all substrates sources of nitrogen. A multivariate pairwise analysis revealed that there is no significant difference between processes occurring on any of the assemblages, suggesting functional homogenisation between distinct substrate types. We infer that the amount and type of organic matter released by abundant algal turfs and cyanobacterial mats on this reef, likely enhances heterotroph activity, and stimulates the proliferation of less diverse copiotrophic microbial populations, rendering the studied reef net heterotrophic and the overall biogeochemical ‘behaviour’ similar regardless of substrate type.


ChemPhysChem ◽  
2021 ◽  
Author(s):  
Florian Venel ◽  
Hiroki Nagashima ◽  
Andrew G.M. Rankin ◽  
Christelle Anquetil ◽  
Vytautas Klimavicius ◽  
...  

2013 ◽  
Vol 10 (2) ◽  
pp. 1193-1207 ◽  
Author(s):  
S.-W. Duan ◽  
S. S. Kaushal

Abstract. Rising water temperatures due to climate and land use change can accelerate biogeochemical fluxes from sediments to streams. We investigated impacts of increased streamwater temperatures on sediment fluxes of dissolved organic carbon (DOC), nitrate, soluble reactive phosphorus (SRP) and sulfate. Experiments were conducted at 8 long-term monitoring sites across land use (forest, agricultural, suburban, and urban) at the Baltimore Ecosystem Study Long-Term Ecological Research (LTER) site in the Chesapeake Bay watershed. Over 20 yr of routine water temperature data showed substantial variation across seasons and years. Lab incubations of sediment and overlying water were conducted at 4 temperatures (4 °C, 15 °C, 25 °C, and 35 °C) for 48 h. Results indicated: (1) warming significantly increased sediment DOC fluxes to overlying water across land use but decreased DOC quality via increases in the humic-like to protein-like fractions, (2) warming consistently increased SRP fluxes from sediments to overlying water across land use, (3) warming increased sulfate fluxes from sediments to overlying water at rural/suburban sites but decreased sulfate fluxes at some urban sites likely due to sulfate reduction, and (4) nitrate fluxes showed an increasing trend with temperature at some forest and urban sites but with larger variability than SRP. Sediment fluxes of nitrate, SRP and sulfate were strongly related to watershed urbanization and organic matter content. Using relationships of sediment fluxes with temperature, we estimate a 5 °C warming would increase mean sediment fluxes of SRP, DOC and nitrate-N across streams by 0.27–1.37 g m−2 yr−1, 0.03–0.14 kg m−2 yr−1, and 0.001–0.06 kg m−2 yr−1. Understanding warming impacts on coupled biogeochemical cycles in streams (e.g., organic matter mineralization, P sorption, nitrification, denitrification, and sulfate reduction) is critical for forecasting shifts in carbon and nutrient loads in response to interactive impacts of climate and land use change.


2013 ◽  
Vol 10 (1) ◽  
pp. 53-66 ◽  
Author(s):  
W. J. Burt ◽  
H. Thomas ◽  
K. Fennel ◽  
E. Horne

Abstract. Exchanges between sediment pore waters and the overlying water column play a significant role in the chemical budgets of many important chemical constituents. Direct quantification of such benthic fluxes requires explicit knowledge of the sediment properties and biogeochemistry. Alternatively, changes in water-column properties near the sediment-water interface can be exploited to gain insight into the sediment biogeochemistry and benthic fluxes. Here, we apply a 1-D diffusive mixing model to near-bottom water-column profiles of 224Ra activity in order to yield vertical eddy diffusivities (KZ), based upon which we assess the diffusive exchange of dissolved inorganic carbon (DIC), nutrients and oxygen (O2), across the sediment-water interface in a coastal inlet, Bedford Basin, Nova Scotia, Canada. Numerical model results are consistent with the assumptions regarding a constant, single benthic source of 224Ra, the lack of mixing by advective processes, and a predominantly benthic source and sink of DIC and O2, respectively, with minimal water-column respiration in the deep waters of Bedford Basin. Near-bottom observations of DIC, O2 and nutrients provide flux ratios similar to Redfield values, suggesting that benthic respiration of primarily marine organic matter is the dominant driver. Furthermore, a relative deficit of nitrate in the observed flux ratios indicates that denitrification also plays a role in the oxidation of organic matter, although its occurrence was not strong enough to allow us to detect the corresponding AT fluxes out of the sediment. Finally, comparison with other carbon sources reveal the observed benthic DIC release as a significant contributor to the Bedford Basin carbon system.


2017 ◽  
Vol 76 (12) ◽  
pp. 3269-3277 ◽  
Author(s):  
B. Neethu ◽  
M. M. Ghangrekar

Abstract Sediment microbial fuel cells (SMFCs) are bio-electrochemical devices generating electricity from redox gradients occurring across the sediment–water interface. Sediment microbial carbon-capture cell (SMCC), a modified SMFC, uses algae grown in the overlying water of sediment and is considered as a promising system for power generation along with algal cultivation. In this study, the performance of SMCC and SMFC was evaluated in terms of power generation, dissolved oxygen variations, sediment organic matter removal and algal growth. SMCC gave a maximum power density of 22.19 mW/m2, which was 3.65 times higher than the SMFC operated under similar conditions. Sediment organic matter removal efficiencies of 77.6 ± 2.1% and 61.0 ± 1.3% were obtained in SMCC and SMFC, respectively. With presence of algae at the cathode, a maximum chemical oxygen demand and total nitrogen removal efficiencies of 63.3 ± 2.3% (8th day) and 81.6 ± 1.2% (10th day), respectively, were observed. The system appears to be favorable from a resources utilization perspective as it does not depend on external aeration or membranes and utilizes algae and organic matter present in sediment for power generation. Thus, SMCC has proven its applicability for installation in an existing oxidation pond for sediment remediation, algae growth, carbon conversion and power generation, simultaneously.


2020 ◽  
Vol 13 (3) ◽  
pp. 1517-1538
Author(s):  
Charlotte Bürki ◽  
Matteo Reggente ◽  
Ann M. Dillner ◽  
Jenny L. Hand ◽  
Stephanie L. Shaw ◽  
...  

Abstract. The Fourier transform infrared (FTIR) spectra of fine particulate matter (PM2.5) contain many important absorption bands relevant for characterizing organic matter (OM) and obtaining organic matter to organic carbon (OM∕OC) ratios. However, extracting this information quantitatively – accounting for overlapping absorption bands and relating absorption to molar abundance – and furthermore relating abundances of functional groups to that of carbon atoms poses several challenges. In this work, we define a set of parameters that model these relationships and apply a probabilistic framework to identify values consistent with collocated field measurements of thermal–optical reflectance organic carbon (TOR OC). Parameter values are characterized for various sample types identified by cluster analysis of sample FTIR spectra, which are available for 17 sites in the Interagency Monitoring of Protected Visual Environments (IMPROVE) monitoring network (7 sites in 2011 and 10 additional sites in 2013). The cluster analysis appears to separate samples according to predominant influence by dust, residential wood burning, wildfire, urban sources, and biogenic aerosols. Functional groups calibrations of aliphatic CH, alcohol COH, carboxylic acid COOH, carboxylate COO, and amine NH2 combined together reproduce TOR OC concentrations with reasonable agreement (r=0.96 for 2474 samples) and provide OM∕OC values generally consistent with our current best estimate of ambient OC. The mean OM∕OC ratios corresponding to sample types determined from cluster analysis range between 1.4 and 2.0, though ratios for individual samples exhibit a larger range. Trends in OM∕OC for sites aggregated by region or year are compared with another regression approach for estimating OM∕OC ratios from a mass closure equation of the major chemical species contributing to PM fine mass. Differences in OM∕OC estimates are observed according to estimation method and are explained through the sample types determined from spectral profiles of the PM.


2022 ◽  
Vol 216 ◽  
pp. 106374
Author(s):  
Hongping Zhang ◽  
Meng Chen ◽  
Chenghua Sun ◽  
Youhong Tang ◽  
Yuxiang Ni ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document