scholarly journals Microbial dynamics in a High-Arctic glacier forefield: a combined field, laboratory, and modelling approach

2016 ◽  
Author(s):  
James A. Bradley ◽  
Sandra Arndt ◽  
Marie Šabacká ◽  
Liane G. Benning ◽  
Gary L. Barker ◽  
...  

Abstract. Modelling the development of soils in glacier forefields is necessary in order to assess how microbial and geochemical processes interact and shape soil development in response to glacier retreat. Furthermore, such models can help us predict microbial growth and the fate of Arctic soils in an increasingly ice-free future. Here, for the first time, we combined field sampling with laboratory analyses and numerical modelling to investigate microbial community dynamics in oligotrophic proglacial soils in Svalbard. We measured low bacterial growth rates and growth efficiencies (relative to estimates from Alpine glacier forefields), and high sensitivity to soil temperature (relative to temperate soils). We used these laboratory measurements to inform parameter values in a new numerical model and significantly refined predictions of microbial and biogeochemical dynamics of soil development over a period of roughly 120 years. The model predicted the observed accumulation of autotrophic and heterotrophic biomass. Genomic data indicated that initial microbial communities were dominated by bacteria derived from the subglacial environment, whereas older soils hosted a mixed community of autotrophic and heterotrophic bacteria. This finding was validated by the numerical model, which showed that active microbial communities play key roles in fixing and recycling carbon and nutrients. We also demonstrated the role of allochthonous carbon and microbial necromass in sustaining a pool of organic material, despite high heterotrophic activity in older soils. This combined field, laboratory and modelling approach demonstrates the value of integrated model-data studies to understand and quantify the functioning of the microbial community in an emerging High-Arctic soil ecosystem.

2016 ◽  
Vol 13 (19) ◽  
pp. 5677-5696 ◽  
Author(s):  
James A. Bradley ◽  
Sandra Arndt ◽  
Marie Šabacká ◽  
Liane G. Benning ◽  
Gary L. Barker ◽  
...  

Abstract. Modelling the development of soils in glacier forefields is necessary in order to assess how microbial and geochemical processes interact and shape soil development in response to glacier retreat. Furthermore, such models can help us predict microbial growth and the fate of Arctic soils in an increasingly ice-free future. Here, for the first time, we combined field sampling with laboratory analyses and numerical modelling to investigate microbial community dynamics in oligotrophic proglacial soils in Svalbard. We measured low bacterial growth rates and growth efficiencies (relative to estimates from Alpine glacier forefields) and high sensitivity of bacterial growth rates to soil temperature (relative to temperate soils). We used these laboratory measurements to inform parameter values in a new numerical model and significantly refined predictions of microbial and biogeochemical dynamics of soil development over a period of roughly 120 years. The model predicted the observed accumulation of autotrophic and heterotrophic biomass. Genomic data indicated that initial microbial communities were dominated by bacteria derived from the glacial environment, whereas older soils hosted a mixed community of autotrophic and heterotrophic bacteria. This finding was simulated by the numerical model, which showed that active microbial communities play key roles in fixing and recycling carbon and nutrients. We also demonstrated the role of allochthonous carbon and microbial necromass in sustaining a pool of organic material, despite high heterotrophic activity in older soils. This combined field, laboratory, and modelling approach demonstrates the value of integrated model–data studies to understand and quantify the functioning of the microbial community in an emerging High Arctic soil ecosystem.


2021 ◽  
Vol 11 ◽  
Author(s):  
Yong-Hoe Choe ◽  
Mincheol Kim ◽  
Yoo Kyung Lee

Understanding microbial niche variability in polar regions can provide insights into the adaptive diversification of microbial lineages in extreme environments. Compositions of microbial communities in Arctic soils are well documented but a comprehensive multidomain diversity assessment of rocks remains insufficiently studied. In this study, we obtained two types of rocks (sandstone and limestone) and soils around the rocks in a high Arctic polar desert (Svalbard), and examined the compositions of archaeal, bacterial, fungal, and protistan communities in the rocks and soils. The microbial community structure differed significantly between rocks and soils across all microbial groups at higher taxonomic levels, indicating that Acidobacteria, Gemmatimonadetes, Latescibacteria, Rokubacteria, Leotiomycetes, Pezizomycetes, Mortierellomycetes, Sarcomonadea, and Spirotrichea were more abundant in soils, whereas Cyanobacteria, Deinococcus-Thermus, FBP, Lecanoromycetes, Eurotiomycetes, Trebouxiophyceae, and Ulvophyceae were more abundant in rocks. Interestingly, fungal communities differed markedly between two different rock types, which is likely to be ascribed to the predominance of distinct lichen-forming fungal taxa (Verrucariales in limestone, and Lecanorales in sandstone). This suggests that the physical or chemical properties of rocks could be a major determinant in the successful establishment of lichens in lithic environments. Furthermore, the biotic interactions among microorganisms based on co-occurrence network analysis revealed that Polyblastia and Verrucaria in limestone, and Atla, Porpidia, and Candelariella in sandstone play an important role as keystone taxa in the lithic communities. Our study shows that even in niches with the same climate regime and proximity to each other, heterogeneity of edaphic and lithic niches can affect microbial community assembly, which could be helpful in comprehensively understanding the effects of niche on microbial assembly in Arctic terrestrial ecosystems.


2005 ◽  
Vol 68 (1) ◽  
pp. 40-48 ◽  
Author(s):  
ANABELLE MATOS ◽  
JAY L. GARLAND

Potential biological control inoculants, Pseudomonas fluorescens 2-79 and microbial communities derived from market sprouts or laboratory-grown alfalfa sprouts, were introduced into alfalfa seeds with and without a Salmonella inoculum. We examined their ability to inhibit the growth of this foodborne pathogen and assess the relative effects of the inoculants on the alfalfa microbial community structure and function. Alfalfa seeds contaminated with a Salmonella cocktail were soaked for 2 h in bacterial suspensions from each inoculant tested. Inoculated alfalfa seeds were grown for 7 days and sampled during days 1, 3, and 7. At each sampling, alfalfa sprouts were sonicated for 7 min to recover microflora from the surface, and the resulting suspensions were diluted and plated on selective and nonselective media. Total bacterial counts were obtained using acridine orange staining, and the percentage culturability was calculated. Phenotypic potential of sprout-associated microbial communities inoculated with biocontrol treatments was assessed using community-level physiological profiles based on patterns of use of 95 separate carbon sources in Biolog plates. Community-level physiological profiles were also determined using oxygen-sensitive fluorophore in BD microtiter plates to examine functional patterns in these communities. No significant differences in total and mesophilic aerobe microbial cell density or microbial richness resulting from the introduction of inoculants on alfalfa seeds with and without Salmonella were observed. P. fluorescens 2-79 exhibited the greatest reduction in the growth of Salmonella early during alfalfa growth (4.22 log at day 1), while the market sprout inoculum had the reverse effect, resulting in a maximum log reduction (5.48) of Salmonella on day 7. Community-level physiological profiles analyses revealed that market sprout communities peaked higher and faster compared with the other inoculants tested. These results suggest that different modes of actions of single versus microbial consortia biocontrol treatments may be involved.


mSystems ◽  
2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Arunima Bhattacharjee ◽  
Dusan Velickovic ◽  
Thomas W. Wietsma ◽  
Sheryl L. Bell ◽  
Janet K. Jansson ◽  
...  

ABSTRACT Understanding the basic biology that underpins soil microbiome interactions is required to predict the metaphenomic response to environmental shifts. A significant knowledge gap remains in how such changes affect microbial community dynamics and their metabolic landscape at microbially relevant spatial scales. Using a custom-built SoilBox system, here we demonstrated changes in microbial community growth and composition in different soil environments (14%, 24%, and 34% soil moisture), contingent upon access to reservoirs of nutrient sources. The SoilBox emulates the probing depth of a common soil core and enables determination of both the spatial organization of the microbial communities and their metabolites, as shown by confocal microscopy in combination with mass spectrometry imaging (MSI). Using chitin as a nutrient source, we used the SoilBox system to observe increased adhesion of microbial biomass on chitin islands resulting in degradation of chitin into N-acetylglucosamine (NAG) and chitobiose. With matrix-assisted laser desorption/ionization (MALDI)-MSI, we also observed several phospholipid families that are functional biomarkers for microbial growth on the chitin islands. Fungal hyphal networks bridging different chitin islands over distances of 27 mm were observed only in the 14% soil moisture regime, indicating that such bridges may act as nutrient highways under drought conditions. In total, these results illustrate a system that can provide unprecedented spatial information about interactions within soil microbial communities as a function of changing environments. We anticipate that this platform will be invaluable in spatially probing specific intra- and interkingdom functional relationships of microbiomes within soil. IMPORTANCE Microbial communities are key components of the soil ecosystem. Recent advances in metagenomics and other omics capabilities have expanded our ability to characterize the composition and function of the soil microbiome. However, characterizing the spatial metabolic and morphological diversity of microbial communities remains a challenge due to the dynamic and complex nature of soil microenvironments. The SoilBox system, demonstrated in this work, simulates an ∼12-cm soil depth, similar to a typical soil core, and provides a platform that facilitates imaging the molecular and topographical landscape of soil microbial communities as a function of environmental gradients. Moreover, the nondestructive harvesting of soil microbial communities for the imaging experiments can enable simultaneous multiomics analysis throughout the depth of the SoilBox. Our results show that by correlating molecular and optical imaging data obtained using the SoilBox platform, deeper insights into the nature of specific soil microbial interactions can be achieved.


2020 ◽  
Vol 2 (7A) ◽  
Author(s):  
Frederik De Boever ◽  
Philippe Potin ◽  
David Green

A major challenge in microbial ecology is to understand the stability of interspecies interactions when progressing from pairs of interacting species to multispecies interaction networks. A lack of direct evidence, and a conceptual framework to explore how direct and indirect effects shape cellular responses in species-rich networks has hindered progress in our understanding of these combined effects. Here we aimed to investigate whether higher-order interactions shape community dynamics and transcriptional profiles of all interacting partners in a simplified microbial community that includes a primary producer (Nannochloropsis oceanica CCAP849/10) and two heterotrophic bacteria (Marinobacter sp. FDB33 and Alteromonas sp. FDB36). By combining co-cultivation assays, quantification of absolute abundances, nutrient analysis, and simultaneous RNA-sequencing, we reveal genome-wide transcriptional responses in all binary co-cultivation partners and show that the third partner can profoundly alter binary interactions at the phenotypic and transcription level. Our study demonstrates the context-dependency of binary interactions, whereby environmental conditions and the presence of specific organisms can affect the cellular physiology of the interacting partners and ultimately the stability of the community. Furthermore, our approach provides a powerful tool for probing the molecular basis of emergent properties in more complex systems.


2019 ◽  
Vol 16 (159) ◽  
pp. 20190423 ◽  
Author(s):  
J. D. Brunner ◽  
N. Chia

Personalized models of the gut microbiome are valuable for disease prevention and treatment. For this, one requires a mathematical model that predicts microbial community composition and the emergent behaviour of microbial communities. We seek a modelling strategy that can capture emergent behaviour when built from sets of universal individual interactions. Our investigation reveals that species–metabolite interaction (SMI) modelling is better able to capture emergent behaviour in community composition dynamics than direct species–species modelling. Using publicly available data, we examine the ability of species–species models and species–metabolite models to predict trio growth experiments from the outcomes of pair growth experiments. We compare quadratic species–species interaction models and quadratic SMI models and conclude that only species–metabolite models have the necessary complexity to explain a wide variety of interdependent growth outcomes. We also show that general species–species interaction models cannot match the patterns observed in community growth dynamics, whereas species–metabolite models can. We conclude that species–metabolite modelling will be important in the development of accurate, clinically useful models of microbial communities.


2019 ◽  
Vol 95 (11) ◽  
Author(s):  
Maria Antonia Cavaco ◽  
Vincent Lawrence St. Louis ◽  
Katja Engel ◽  
Kyra Alexandra St. Pierre ◽  
Sherry Lin Schiff ◽  
...  

ABSTRACT Current models predict increases in High Arctic temperatures and precipitation that will have profound impacts on the Arctic hydrological cycle, including enhanced glacial melt and thawing of active layer soils. However, it remains uncertain how these changes will impact the structure of downstream resident freshwater microbial communities and ensuing microbially driven freshwater ecosystem services. Using the Lake Hazen watershed (Nunavut, Canada; 82°N, 71°W) as a sentinel system, we related microbial community composition (16S rRNA gene sequencing) to physicochemical parameters (e.g. dissolved oxygen and nutrients) over an annual hydrological cycle in three freshwater compartments within the watershed: (i) glacial rivers; (ii) active layer thaw-fed streams and waterbodies and (iii) Lake Hazen, into which (i) and (ii) drain. Microbial communities throughout these freshwater compartments were strongly interconnected, hydrologically, and often correlated with the presence of melt-sourced chemicals (e.g. dissolved inorganic carbon) as the melt season progressed. Within Lake Hazen itself, water column microbial communities were generally stable over spring and summer, despite fluctuating lake physicochemistry, indicating that these communities and the potential ecosystem services they provide therein may be resilient to environmental change. This work helps to establish a baseline understanding of how microbial communities and the ecosystem services they provide in Arctic watersheds might respond to future climate change.


Author(s):  
Daniel Padfield ◽  
Meaghan Castledine ◽  
Joseph Pennycook ◽  
Elze Hesse ◽  
Angus Buckling

AbstractThe ability of species to mutually invade from rare is the defining measure of species coexistence. However, it is unknown whether invasion growth rates predict any characteristic of long-term community dynamics. Here, we use a model five-species microbial community to investigate the link between short-term growth rate and long-term relative abundance. We manipulated diversity and tested the ability of species to coexist in different combinations. Across all diversity levels and species combinations, populations re-established from rare in 71 of 75 combinations and all combinations were stable in long-term culture. Moreover, short-term relative invader growth rate was positively associated with long-term equilibrium proportion, despite large variation in interactions between species and communities. This finding was confirmed using a modelling approach and suggests that the short-term invasion growth rate can predict long-term relative abundance within that community.


2021 ◽  
Vol 10 (1) ◽  
pp. 19
Author(s):  
Gabriella Caruso ◽  
Maria Grazia Giacobbe ◽  
Filippo Azzaro ◽  
Franco Decembrini ◽  
Marcella Leonardi ◽  
...  

Bacterial and phytoplankton communities are known to be in close relationships, but how natural and anthropogenic stressors can affect their dynamics is not fully understood. To study the response of microbial communities to environmental and human-induced perturbations, phytoplankton and bacterial communities were seasonally monitored in a Mediterranean coastal ecosystem, Syracuse Bay, where multiple conflicts co-exist. Quali-quantitative, seasonal surveys of the phytoplankton communities (diatoms, dinoflagellates and other taxa), the potential microbial enzymatic activity rates (leucine aminopeptidase, beta-glucosidase and alkaline phosphatase) and heterotrophic culturable bacterial abundance, together with the thermohaline structure and trophic status in terms of nutrient concentrations, phytoplankton biomass (as Chlorophyll-a), and total suspended and particulate organic matter, were carried out. The aim was to integrate microbial community dynamics in the context of the environmental characterization and disentangle microbial patterns related to natural changes from those driven by the anthropic impact on this ecosystem. In spite of the complex relationships between the habitat characteristics, microbial community abundance and metabolic potential, in Syracuse Bay, the availability of organic substrates differently originated by the local conditions appeared to drive the distribution and activity of microbial assemblage. A seasonal pattern of microbial abundances was observed, with the highest concentrations of phytoplankton in spring and low values in winter, whereas heterotrophic bacteria were more abundant during the autumn period. The autumn peaks of the rates of enzymatic activities suggested that not only phytoplankton-derived but also allochthonous organic polymers strongly stimulated microbial metabolism. Increased microbial response in terms of abundance and metabolic activities was detected especially at the sites directly affected by organic matter inputs related to agriculture or aquaculture activities. Nitrogen salts such as nitrate, rather than orthophosphate, were primary drivers of phytoplankton growth. This study also provides insights on the different seasonal scenarios of water quality in Syracuse Bay, which could be helpful for management plans of this Mediterranean coastal environment.


Sign in / Sign up

Export Citation Format

Share Document