scholarly journals Variation in brachiopod microstructure and isotope geochemistry under low pH–ocean acidification–conditions

2018 ◽  
Author(s):  
Facheng Ye ◽  
Hana Jurikova ◽  
Lucia Angiolini ◽  
Uwe Brand ◽  
Gaia Crippa ◽  
...  

Abstract. Throughout the last few decades and in the near future CO2–induced ocean acidification is potentially a big threat to marine calcite-shelled animals (e.g., brachiopods, bivalves, corals and gastropods). Despite the great number of studies focusing on the effects of acidification on shell growth, metabolism, shell dissolution and shell repair, the consequences on biomineral formation remain poorly understood, and only few studies addressed contemporarily the impact of acidification on shell microstructure and geochemistry. In this study, a detailed microstructure and stable isotope geochemistry investigation was performed on nine adult brachiopod specimens of Magellania venosa (Dixon, 1789), grown in the natural environment as well as in controlled culturing experiments at different pH conditions (ranging 7.35 to 8.15 ± 0.05) over different time intervals (214 to 335 days). Details of shell microstructural features, such as thickness of the primary layer, density and size of endopunctae and morphology of the basic structural unit of the secondary layer were analysed using scanning electron microscopy (SEM). Stable isotope compositions (δ13C and δ18O) were tested from the secondary shell layer along shell ontogenetic increments in both dorsal and ventral valves. Based on our comprehensive dataset, we observed that, under low pH conditions, M. venosa produced a more organic-rich shell with higher density of and larger endopunctae, and smaller secondary layer fibres, when subjected to about one year of culturing. Also, increasingly negative δ13C and δ18O values are recorded by the shell produced during culturing and are related to the CO2–source in the culture setup. Both the microstructural changes and the stable isotope results are similar to observations on brachiopods from the fossil record and strongly support the value of brachiopods as robust archives of proxies for studying ocean acidification events in the geologic past.

2019 ◽  
Vol 16 (2) ◽  
pp. 617-642 ◽  
Author(s):  
Facheng Ye ◽  
Hana Jurikova ◽  
Lucia Angiolini ◽  
Uwe Brand ◽  
Gaia Crippa ◽  
...  

Abstract. In the last few decades and in the near future CO2-induced ocean acidification is potentially a big threat to marine calcite-shelled animals (e.g. brachiopods, bivalves, corals and gastropods). Despite the great number of studies focusing on the effects of acidification on shell growth, metabolism, shell dissolution and shell repair, the consequences for biomineral formation remain poorly understood. Only a few studies have addressed the impact of ocean acidification on shell microstructure and geochemistry. In this study, a detailed microstructure and stable isotope geochemistry investigation was performed on nine adult brachiopod specimens of Magellania venosa (Dixon, 1789). These were grown in the natural environment as well as in controlled culturing experiments under different pH conditions (ranging from 7.35 to 8.15±0.05) over different time intervals (214 to 335 days). Details of shell microstructural features, such as thickness of the primary layer, density and size of endopunctae and morphology of the basic structural unit of the secondary layer were analysed using scanning electron microscopy. Stable isotope compositions (δ13C and δ18O) were tested from the secondary shell layer along shell ontogenetic increments in both dorsal and ventral valves. Based on our comprehensive dataset, we observed that, under low-pH conditions, M. venosa produced a more organic-rich shell with higher density of and larger endopunctae, and smaller secondary layer fibres. Also, increasingly negative δ13C and δ18O values are recorded by the shell produced during culturing and are related to the CO2 source in the culture set-up. Both the microstructural changes and the stable isotope results are similar to observations on brachiopods from the fossil record and strongly support the value of brachiopods as robust archives of proxies for studying ocean acidification events in the geologic past.


2019 ◽  
Author(s):  
Emma Timmins-Schiffman ◽  
José M. Guzmán ◽  
Rhonda Elliott ◽  
Brent Vadopalas ◽  
Steven B. Roberts

AbstractPacific geoduck clams (Panopea generosa) are found along the Northeast Pacific coast where they are significant components of coastal and estuarine ecosystems and the basis of a growing and highly profitable aquaculture industry. The Pacific coastline, however, is also the sight of rapidly changing ocean habitat, including significant reductions in pH. The impacts of ocean acidification on invertebrate bivalve larvae have been widely documented and it is well established that many species experience growth and developmental deficiencies when exposed to low pH. As a native of environments that have historically lower pH than the open ocean, it is possible that geoduck larvae are less impacted by these effects than other species. Over two weeks in larval development (days 6-19 post-fertilization) geoduck larvae were reared at pH 7.5 or 7.1 in a commercial shellfish hatchery. Larvae were sampled at six time points throughout the period for a in-depth proteomics analysis of developmental molecular physiology. Larvae reared at low pH were smaller than those reared at ambient pH, especially in the prodissoconch II phase of development. Competency for settlement was also delayed in larvae from the low pH conditions. A comparison of proteomic profiles over the course of development reveal that these differing phenotypic outcomes are likely due to environmental disruptions to the timing of molecular physiological events as suites of proteins showed differing profiles of abundance between the two pH environments. Ocean acidification likely caused an energetic stress on the larvae at pH 7.1, causing a shift in physiological prioritization with resulting loss of fitness.


2015 ◽  
Vol 73 (3) ◽  
pp. 920-926 ◽  
Author(s):  
Emma L. Cross ◽  
Lloyd S. Peck ◽  
Miles D. Lamare ◽  
Elizabeth M. Harper

Abstract Surface seawaters are becoming more acidic due to the absorption of rising anthropogenic CO2. Marine calcifiers are considered to be the most vulnerable organisms to ocean acidification due to the reduction in the availability of carbonate ions for shell or skeletal production. Rhychonelliform brachiopods are potentially one of the most calcium carbonate-dependent groups of marine organisms because of their large skeletal content. Little is known, however, about the effects of lowered pH on these taxa. A CO2 perturbation experiment was performed on the New Zealand terebratulide brachiopod Calloria inconspicua to investigate the effects of pH conditions predicted for 2050 and 2100 on the growth rate and ability to repair shell. Three treatments were used: an ambient pH control (pH 8.16), a mid-century scenario (pH 7.79), and an end-century scenario (pH 7.62). The ability to repair shell was not affected by acidified conditions with >80% of all damaged individuals at the start of the experiment completing shell repair after 12 weeks. Growth rates in undamaged individuals >3 mm in length were also not affected by lowered pH conditions, whereas undamaged individuals <3 mm grew faster at pH 7.62 than the control. The capability of C. inconspicua to continue shell production and repair under acidified conditions suggests that this species has a robust control over the calcification process, where suitable conditions at the site of calcification can be generated across a range of pH conditions.


2015 ◽  
Author(s):  
Maria Cristina Gambi ◽  
Emanuela Di Meglio ◽  
Luigia Donnarumma

Ocean acidification (OA) is today considered one of the most pervasive stressors for marine biota at the level of species, communities and ecosystems. Naturally acidified systems, such as the CO2 vents, represent suitable laboratories to study the effects of OA on benthic organisms. An analysis of the colonization pattern of epibionts settled on artificial leaves (mimics) of Posidonia oceanica in relation to ocean acidification at the shallow CO2 vents off the island of Ischia, is here presented. Mimics of Posidonia oceanica artificial leaves (dark green flexible PVC stripes 1 cm wide x 36 cm long) were placed from September 2009 to September 2010 along a gradient of OA of the Ischia vent’s system at six stations (3 on the south and 3 on the north side of the study area), located at extreme low pH (mean pH 7.5), low pH (7.8), and control, normal pH conditions (8.12). Six artificial leaves per station were collected every three months and analysed for taxa identification and estimates of coverage (algae and sessile clonal invertebrates) and number of individuals (not clonal taxa). Patterns of colonization in control stations showed a progressive increase in time in coverage values of many organisms, mainly calcifying forms as coralline algae, which represent the dominant taxon, spirorbids and bryozoans. Colonization of artificial leaves located in low pH stations followed a similar temporal pattern as control conditions, but with lower coverage and higher patchiness of calcareous forms at 12 months of colonization. Epibionts in extreme low pH conditions were dominated by filamentous green/brown algae, with the occurrence of a few coralline algae, spirorbids and bryozoans, especially in the early months of colonization (3 and 6 months). Colonization at 9 and 12 months showed the disappearance of even these rare calcareous organisms and occurrence only of filamentous turf and fleshy algae, with a very simplified epibiont assemblage, remaining at an early, young colonization stage. These results indicate a strong selection of calcareous forms and the lack of successional stages in extreme low pH conditions, while the few calcifiers settled at short exposure time (3-6 months) do not seem to survive at longer exposure to critical values of OA.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Victor M. Aguilera ◽  
Cristian A. Vargas ◽  
Hans G. Dam

AbstractLinking pH/pCO2 natural variation to phenotypic traits and performance of foundational species provides essential information for assessing and predicting the impact of ocean acidification (OA) on marine ecosystems. Yet, evidence of such linkage for copepods, the most abundant metazoans in the oceans, remains scarce, particularly for naturally corrosive Eastern Boundary Upwelling systems (EBUs). This study assessed the relationship between pH levels and traits (body and egg size) and performance (ingestion rate (IR) and egg reproduction rate (EPR)) of the numerically dominant neritic copepod Acartia tonsa, in a year-round upwelling system of the northern (23° S) Humboldt EBUs. The study revealed decreases in chlorophyll (Chl) ingestion rate, egg production rate and egg size with decreasing pH as well as egg production efficiency, but the opposite for copepod body size. Further, ingestion rate increased hyperbolically with Chl, and saturated at ~1 µg Chl. L−1. Food resources categorized as high (H, >1 µg L−1) and low (L, <1 µg L−1) levels, and pH-values categorized as equivalent to present day (≤400 µatm pCO2, pH > 7.89) and future (>400 µatm pCO2, pH < 7.89) were used to compare our observations to values globally employed to experimentally test copepod sensitivity to OA. A comparison (PERMANOVA) test with Chl/pH (2*2) design showed that partially overlapping OA levels expected for the year 2100 in other ocean regions, low-pH conditions in this system negatively impacted traits and performance associated with copepod fitness. However, interacting antagonistically with pH, food resource (Chl) maintained copepod production in spite of low pH levels. Thus, the deleterious effects of ocean acidification are modulated by resource availability in this system.


2019 ◽  
Vol 86 (4) ◽  
Author(s):  
Daniela Wetzel ◽  
Shonna M. McBride

ABSTRACT Clostridioides difficile is a pathogenic bacterium that infects the human colon to cause diarrheal disease. Growth of the bacterium is known to be dependent on certain bile acids, oxygen levels, and nutrient availability in the intestine, but how the environmental pH can influence C. difficile is mostly unknown. Previous studies indicated that C. difficile modulates the intestinal pH, and prospective cohort studies have found a strong association between a more alkaline fecal pH and C. difficile infection. Based on these data, we hypothesized that C. difficile physiology can be affected by various pH conditions. In this study, we investigated the impact of a range of pH conditions on C. difficile to assess potential effects on growth, sporulation, motility, and toxin production in the strains 630Δerm and R20291. We observed pH-dependent differences in sporulation rate, spore morphology, and viability. Sporulation frequency was lowest under acidic conditions, and differences in cell morphology were apparent at low pH. In alkaline environments, C. difficile sporulation was greater for strain 630Δerm, whereas R20291 produced relatively high levels of spores in a broad range of pH conditions. Rapid changes in pH during exponential growth impacted sporulation similarly among the strains. Furthermore, we observed an increase in C. difficile motility with increases in pH, and strain-dependent differences in toxin production under acidic conditions. The data demonstrate that pH is an important parameter that affects C. difficile physiology and may reveal relevant insights into the growth and dissemination of this pathogen. IMPORTANCE Clostridioides difficile is an anaerobic bacterium that causes gastrointestinal disease. C. difficile forms dormant spores which can survive harsh environmental conditions, allowing their spread to new hosts. In this study, we determine how intestinally relevant pH conditions impact C. difficile physiology in the two divergent strains, 630Δerm and R20291. Our data demonstrate that low pH conditions reduce C. difficile growth, sporulation, and motility. However, toxin production and spore morphology were differentially impacted in the two strains at low pH. In addition, we observed that alkaline environments reduce C. difficile growth, but increase cell motility. When pH was adjusted rapidly during growth, we observed similar impacts on both strains. This study provides new insights into the phenotypic diversity of C. difficile grown under diverse pH conditions present in the intestinal tract, and demonstrates similarities and differences in the pH responses of different C. difficile isolates.


Diversity ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 311
Author(s):  
Alessandra Barruffo ◽  
Laura Ciaralli ◽  
Giandomenico Ardizzone ◽  
Maria Cristina Gambi ◽  
Edoardo Casoli

Ocean acidification has been broadly recognised to have effects on the structure and functioning of marine benthic communities. The selection of tolerant or vulnerable species can also occur during settlement phases, especially for calcifying organisms which are more vulnerable to low pH–high pCO2 conditions. Here, we use three natural CO2 vents (Castello Aragonese north and south sides, and Vullatura, Ischia, Italy) to assess the effect of a decrease of seawater pH on the settlement of Mollusca in Posidonia oceanica meadows, and to test the possible buffering effect provided by the seagrass. Artificial collectors were installed and collected after 33 days, during April–May 2019, in three different microhabitats within the meadow (canopy, bottom/rhizome level, and dead matte without plant cover), following a pH decreasing gradient from an extremely low pH zone (pH < 7.4), to ambient pH conditions (pH = 8.10). A total of 4659 specimens of Mollusca, belonging to 57 different taxa, were collected. The number of taxa was lower in low and extremely low pH conditions. Reduced mollusc assemblages were reported at the acidified stations, where few taxa accounted for a high number of individuals. Multivariate analyses revealed significant differences in mollusc assemblages among pH conditions, microhabitat, and the interaction of these two factors. Acanthocardia echinata, Alvania lineata, Alvania sp. juv, Eatonina fulgida, Hiatella arctica, Mytilys galloprovincialis, Musculus subpictus, Phorcus sp. juv, and Rissoa variabilis were the species mostly found in low and extremely low pH stations, and were all relatively robust to acidified conditions. Samples placed on the dead matte under acidified conditions at the Vullatura vent showed lower diversity and abundances if compared to canopy and bottom/rhizome samples, suggesting a possible buffering role of the Posidonia on mollusc settlement. Our study provides new evidence of shifts in marine benthic communities due to ocean acidification and evidence of how P. oceanica meadows could mitigate its effects on associated biota in light of future climate change.


2009 ◽  
Vol 6 (1) ◽  
pp. 2523-2537 ◽  
Author(s):  
S. Comeau ◽  
G. Gorsky ◽  
R. Jeffree ◽  
J.-L. Teyssié ◽  
J.-P. Gattuso

Abstract. Thecosome pteropods (shelled pelagic molluscs) can play an important role in the food web of various ecosystems and play a key role in the cycling of carbon and carbonate. Since they harbor an aragonitic shell, they could be very sensitive to ocean acidification driven by the increase of anthropogenic CO2 emissions. The impact of changes in the carbonate chemistry was investigated on Limacina helicina, a key species of Arctic ecosystems. Pteropods were kept in culture under controlled pH conditions corresponding to pCO2 levels of 350 and 760 μatm. Calcification was estimated using a fluorochrome and the radioisotope 45Ca. It exhibits a 28% decrease at the pH value expected for 2100 compared to the present pH value. This result supports the concern for the future of pteropods in a high-CO2 world, as well as of those species dependent upon them as a food resource. A decline of their populations would likely cause dramatic changes to the structure, function and services of polar ecosystems.


Sign in / Sign up

Export Citation Format

Share Document