scholarly journals A stable ultrastructural pattern despite variable cell size in <i>Lithothamnion corallioides</i>

2021 ◽  
Author(s):  
Valentina Alice Bracchi ◽  
Giulia Piazza ◽  
Daniela Basso

Abstract. Recent advances on the mechanism and pattern of calcification in coralline algae lead to contradictory conclusions. Coralline calcification appears biologically induced, as suggested by the dependency of its elemental composition on environmental variables. However, evidence of a biologically controlled calcification process, resulting in distinctive patterns at the scale of family, was also observed. In order to clarify the matter, five collections of Lithothamnion corallioides from the Atlantic Ocean and the Mediterranean Sea, across a wide depth range (12–66 m) have been analyzed for morphology, anatomy and cell wall crystal patterns of both perithallial and epithallial cells, in order to detect possible ultrastructural changes. L. corallioides shows the alternation of tiers of short-squared and long-ovoid/rectangular cells along the perithallus, forming a typical banding. The perithallial cell length decreases according to water depth and growth-rate, whereas diameter remains constant. Our observations confirm that both epithallial and perithallial cells show primary (PW) and secondary (SW) calcite walls. Rectangular tiles, with the long axis parallel to the cell membrane forming a multi-layered structure, characterize the PW. Flattened squared bricks characterize the SW with roundish outlines enveloping the cell and showing a zigzag pattern. Long and short cells have different thickness of PW and SW, with a thicker SW and PW in short cells. Epithallial cells are one up to three flared cells, with the same shape of the PW and SW crystals. Despite the diverse seafloor environments and the variable L. corallioides growth-rate, the cell walls maintain a consistent ultrastructural pattern, with unaffected crystal shape and arrangement. A comparison with two congeneric species, L. minervae and L. valens, showed similar ultrastructural patterns in SW, but evident differences in the PW crystal shape. Our observations point to a biological control rather than an induction of the calcification process in coralline algae, and suggest a possible new morphological diagnostic tool for species identification, with relevant importance for paleontological application. Finally, secondary calcite, in form of dogtooth crystals that fill the cell lumen, has been observed. It represents a form of early diagenesis in living collections which can have implications in the reliability of climate and paleoclimate studies based on the geochemistry techniques.

2021 ◽  
Vol 18 (22) ◽  
pp. 6061-6076
Author(s):  
Valentina Alice Bracchi ◽  
Giulia Piazza ◽  
Daniela Basso

Abstract. Recent advances on the mechanism and pattern of calcification in coralline algae led to contradictory conclusions. The evidence of a biologically controlled calcification process, resulting in distinctive patterns at the scale of family, was observed. However, the coralline calcification process has been also interpreted as biologically induced because of the dependency of its elemental composition on environmental variables. To clarify the matter, five collections of Lithothamnion corallioides from the Atlantic Ocean and the Mediterranean Sea, across a wide depth range (12–66 m), have been analyzed for morphology, anatomy and cell wall crystal patterns in both perithallial and epithallial cells to detect possible ultrastructural changes. L. corallioides shows the alternation of tiers of short-squared and long-ovoid/rectangular cells along the perithallus, forming a typical banding. The perithallial cell length decreases according to water depth and growth rate, whereas the diameter remains constant. Our observations confirm that both epithallial and perithallial cells show primary (PW) and secondary (SW) calcite walls. Rectangular tiles, with the long axis parallel to the cell membrane forming a multi-layered structure, characterize the PW. Flattened squared bricks characterize the SW, with roundish outlines enveloping the cell and showing a zigzag and cross orientation. Long and short cells have different thicknesses of PW and SW, increasing in short cells. Epithallial cells are one to three flared cells with the same shape of the PW and SW crystals. Despite the diverse seafloor environments and the variable L. corallioides growth rate, the cell walls maintain a consistent ultrastructural pattern with unaffected crystal shape and arrangement. A comparison with two congeneric species, L. minervae and L. valens, showed similar ultrastructural patterns in the SW but evident differences in the PW crystal shape. Our observations point to a biologically control rather than an induction of the calcification process in coralline algae and suggest a possible new morphological diagnostic tool for species identification, with relevant importance for paleontological applications. Finally, secondary calcite, in the form of dogtooth crystals that fill the cell lumen, has been observed. It represents a form of early alteration in living collections which can have implications in the reliability of climate and paleoclimate studies based on geochemical techniques.


2018 ◽  
Vol 15 (19) ◽  
pp. 5745-5759 ◽  
Author(s):  
Siobhan Williams ◽  
Walter Adey ◽  
Jochen Halfar ◽  
Andreas Kronz ◽  
Patrick Gagnon ◽  
...  

Abstract. The shallow-marine benthic coralline alga Clathromorphum compactum is an important annual- to sub-annual-resolution archive of Arctic and subarctic environmental conditions, allowing reconstructions going back > 600 years. Both Mg content, in the high-Mg calcitic cell walls, and annual algal growth increments have been used as a proxy for past temperatures and sea ice conditions. The process of calcification in coralline algae has been debated widely, with no definitive conclusion about the role of light and photosynthesis in growth and calcification. Light received by algal specimens can vary with latitude, water depth, sea ice conditions, water turbidity, and shading. Furthermore, field calibration studies of Clathromorphum sp. have yielded geographically disparate correlations between MgCO3 and sea surface temperature. The influence of other environmental controls, such as light, on Mg uptake and calcification has received little attention. We present results from an 11-month mesocosm experiment in which 123 wild-collected C. compactum specimens were grown in conditions simulating their natural habitat. Specimens grown for periods of 1 and 2 months in complete darkness show that the typical complex of anatomy and cell wall calcification develops in new tissue without the presence of light, demonstrating that calcification is metabolically driven and not a side effect of photosynthesis. Also, we show that both light and temperature significantly affect MgCO3 in C. compactum cell walls. For specimens grown at low temperature (2 ∘C), the effects of light are smaller, with a 1.4 mol % MgCO3 increase from low-light (mean = 17 lx) to high-light conditions (mean = 450 lx). At higher (10 ∘C) temperature there was a 1.8 mol % MgCO3 increase from low to high light. It is therefore concluded that site- and possibly specimen-specific temperature calibrations must be applied, to account for effects of light when generating Clathromorphum-derived temperature calibrations.


Paleobiology ◽  
1984 ◽  
Vol 10 (4) ◽  
pp. 469-486 ◽  
Author(s):  
W. Bruce Saunders

Bottom site remote camera photosequences at depths of 73–538 m on forereef slopes in Palau show that Nautilus belauensis is a highly mobile, chemosensitive, epibenthic scavenger and opportunistic predator. The overall depth range of this species is ca. 70–500 m, but photosequences indicate a preferred range of 150–300 m. Nautilus is active both nocturnally and diurnally, locating bait sites within 1–2 h. Associated macrofauna includes caridean shrimps, crabs, and eels; teleosts are rare below 100 m, but sharks are recorded in most photosequences below 250 m. Summarily, Nautilus exhibits a combination of characters that typify deep-sea strategy, including reproductive tactics, growth rate, and population dynamics. This and other evidence suggest that fossil Nautilidae may have been deep-water forms, in contrast to the typically shallower water ammonoids, and that Nautilus is a normal component of the deep forereef rather than a late Cretaceous refugee from shallow water.


Author(s):  
Joanna M. Kain ◽  
N. S. Jones

INTRODUCTIONStudies of established populations of Laminaria hyperborea (Gunn.) Fosl. have indicated that there is often less change of growth rate with depth than might be expected to result from the decrease in irradiance (Kain, 1967; Lüming, 1969; Jupp & Drew, 1974). This has been attributed to self-limitation by the canopy of Laminaria fronds (Lüning, 1969; Kain et al. 1976). The removal of this canopy can result in fast growth in shallow water (Kitching, 1941; Svendsen, 1972) and a marked differential in growth rate over a small depth range (Svendsen, personal communication). A series of rocky subtidal areas at two depths off the Isle of Man was cleared of vegetation at various times (Kain, 1975a). This provided an opportunity to make growth measurements on individuals of known age in the absence of a canopy formed by older plants.


1997 ◽  
Vol 27 (4) ◽  
pp. 453-463 ◽  
Author(s):  
M S Günthardt-Georg ◽  
C J McQuattie ◽  
C Scheidegger ◽  
C Rhiner ◽  
R Matyssek

IAWA Journal ◽  
2012 ◽  
Vol 33 (4) ◽  
pp. 403-416 ◽  
Author(s):  
Karumanchi S. Rao ◽  
Yoon Soo Kim ◽  
Pramod Sivan

Sequential changes occurring in cell walls during expansion, secondary wall (SW) deposition and lignification have been studied in the differentiating xylem elements of Holoptelea integrifolia using transmission electron microscopy. The PATAg staining revealed that loosening of the cell wall starts at the cell corner middle lamella (CCML) and spreads to radial and tangential walls in the zone of cell expansion (EZ). Lignification started at the CCML region between vessels and associated parenchyma during the final stages of S2 layer formation. The S2 layer in the vessel appeared as two sublayers,an inner one and outer one.The contact ray cells showed SW deposition soon after axial paratracheal parenchyma had completed it, whereas noncontact ray cells underwent SW deposition and lignification following apotracheal parenchyma cells. The paratracheal and apotracheal parenchyma cells differed noticeably in terms of proportion of SW layers and lignin distribution pattern. Fibres were found to be the last xylem elements to complete SW deposition and lignification with differential polymerization of cell wall polysaccharides. It appears that the SW deposition started much earlier in the middle region of the fibres while their tips were still undergoing elongation. In homogeneous lignin distribution was noticed in the CCML region of fibres.


2021 ◽  
Author(s):  
Sachin Kaothekar

Impact of porosity, rotation and finite ion Larmor radius (FLR) corrections on thermal instability of immeasurable homogeneous plasma has been discovered incorporating the effects of radiative heat-loss function and thermal conductivity. The general dispersion relation is carried out with the help of the normal mode analysis scheme taking the suitable linearized perturbation equations of the difficulty. This general dispersion relations is further reduces for rotation axis parallel and perpendicular to the magnetic field. Thermal instability criterion establishes the stability of the medium. Mathematical calculations have been performed to represent the impact of different limitations on the growth rate of thermal instability. It is found that rotation, FLR corrections and medium porosity stabilize the growth rate of the medium in the transverse mode of propagation. Our outcome of the problem explains that the rotation, porosity and FLR corrections affect the dens molecular clouds arrangement and star configuration in interstellar medium.


2021 ◽  
Author(s):  
Giulia Piazza ◽  
Valentina A. Bracchi ◽  
Antonio Langone ◽  
Agostino N. Meroni ◽  
Daniela Basso

Abstract. The B / Ca ratio in calcareous marine species is informative of past seawater CO32− concentrations, but scarce data exist on B / Ca in coralline algae (CA). Recent studies suggest influences of temperature and growth rates on B / Ca, the effect of which could be critical for the reconstructions of surface ocean pH and atmospheric pCO2. In this paper, we present the first LA-ICP-MS analyses of Mg, Sr, Li and B in the CA Lithothamnion corallioides collected from different geographic settings and depths across the Mediterranean Sea and in the Atlantic Ocean. We produced the first data on temperature proxies (Mg, Li and Sr / Ca) and B / Ca in a CA species grown in different Basins (the Mediterranean Sea and the Atlantic Ocean), from shallow to deep waters (12 m, 40 m, 45 m and 66 m depth). We tested the B / Ca correlation with temperature proxies and growth rates, in order to evaluate their possible effect on B incorporation. Our results showed a growth rate influence on B / Ca, especially in the deepest sample (Pontian Isl., Italy; 66 m) and in the shallowest sample (Morlaix, Atlantic coast of France; 12 m), where the growth rates were respectively 0.11 mm/yr and 0.13 mm/yr and the B / Ca was respectively 462.8 ± 49.2 μmol/mol and 726.9 ± 102.8 μmol/mol. A positive correlation between B / Ca and the temperature proxies was found only in Morlaix, where the seasonal temperature variation (ΔT) was the highest (8.90 °C). These pieces of evidence suggest that growth rates, triggered by the different ΔT and light availability across depth, affect the B incorporation in L. corallioides.


Sign in / Sign up

Export Citation Format

Share Document