scholarly journals Environmental forcing of the Campeche cold-water coral province, southern Gulf of Mexico

2013 ◽  
Vol 10 (11) ◽  
pp. 18757-18801 ◽  
Author(s):  
D. Hebbeln ◽  
C. Wienberg ◽  
P. Wintersteller ◽  
A. Freiwald ◽  
M. Becker ◽  
...  

Abstract. With an extension of >40 km2 the recently discovered Campeche cold-water coral province located at the northeastern rim of the Campeche Bank in the southern Gulf of Mexico belongs to the largest coherent cold-water coral areas discovered so far. The Campeche province consists of numerous 20 to 40 m high coral ridges that are developed in intermediate water depths of 500 to 600 m. The ridges are colonized by a vivid cold-water coral ecosystem that covers the upper flanks and summits. The rich coral community is dominated by the framework-building scleractinia Enallopsammia profunda and Lophelia pertusa while the associated benthic megafauna shows a rather scarce occurrence. The recent environmental setting is characterized by a high surface water production caused by a local upwelling center and a dynamic bottom water regime comprising vigorous bottom currents, internal waves and strong density contrasts, which all together provide optimal conditions for the growth of cold-water corals. The strong hydrodynamics – potentially supported by the diel vertical migration of zooplankton in the Campeche area – drive the delivering of food particles to the corals. The Campeche cold-water coral province is, thus, an excellent example highlighting the importance of the hydrographic setting in securing the food supply for the development of large and vivid cold-water coral ecosystems.

2014 ◽  
Vol 11 (7) ◽  
pp. 1799-1815 ◽  
Author(s):  
D. Hebbeln ◽  
C. Wienberg ◽  
P. Wintersteller ◽  
A. Freiwald ◽  
M. Becker ◽  
...  

Abstract. With an extension of > 40 km2 the recently discovered Campeche cold-water coral province located at the northeastern rim of the Campeche Bank in the southern Gulf of Mexico belongs to the largest coherent cold-water coral areas discovered so far. The Campeche province consists of numerous 20–40 m-high elongated coral mounds that are developed in intermediate water depths of 500 to 600 m. The mounds are colonized by a vivid cold-water coral ecosystem that covers the upper flanks and summits. The rich coral community is dominated by the framework-building Scleractinia Enallopsammia profunda and Lophelia pertusa, while the associated benthic megafauna shows a rather scarce occurrence. The recent environmental setting is characterized by a high surface water production caused by a local upwelling center and a dynamic bottom-water regime comprising vigorous bottom currents, obvious temporal variability, and strong density contrasts, which all together provide optimal conditions for the growth of cold-water corals. This setting – potentially supported by the diel vertical migration of zooplankton in the Campeche area – controls the delivering of food particles to the corals. The Campeche cold-water coral province is, thus, an excellent example highlighting the importance of the oceanographic setting in securing the food supply for the development of large and vivid cold-water coral ecosystems.


2014 ◽  
Vol 11 (7) ◽  
pp. 1863-1871 ◽  
Author(s):  
J. Raddatz ◽  
A. Rüggeberg ◽  
S. Flögel ◽  
E. C. Hathorne ◽  
V. Liebetrau ◽  
...  

Abstract. The increasing pCO2 in seawater is a serious threat for marine calcifiers and alters the biogeochemistry of the ocean. Therefore, the reconstruction of past-seawater properties and their impact on marine ecosystems is an important way to investigate the underlying mechanisms and to better constrain the effects of possible changes in the future ocean. Cold-water coral (CWC) ecosystems are biodiversity hotspots. Living close to aragonite undersaturation, these corals serve as living laboratories as well as archives to reconstruct the boundary conditions of their calcification under the carbonate system of the ocean. We investigated the reef-building CWC Lophelia pertusa as a recorder of intermediate ocean seawater pH. This species-specific field calibration is based on a unique sample set of live in situ collected L. pertusa and corresponding seawater samples. These data demonstrate that uranium speciation and skeletal incorporation for azooxanthellate scleractinian CWCs is pH dependent and can be reconstructed with an uncertainty of ±0.15. Our Lophelia U / Ca–pH calibration appears to be controlled by the high pH values and thus highlighting the need for future coral and seawater sampling to refine this relationship. However, this study recommends L. pertusa as a new archive for the reconstruction of intermediate water mass pH and hence may help to constrain tipping points for ecosystem dynamics and evolutionary characteristics in a changing ocean.


2013 ◽  
Vol 10 (10) ◽  
pp. 15711-15733
Author(s):  
J. Raddatz ◽  
A. Rüggeberg ◽  
S. Flögel ◽  
E. C. Hathorne ◽  
V. Liebetrau ◽  
...  

Abstract. The increasing pCO2 in seawater is a serious threat for marine calcifiers and alters the biogeochemistry of the ocean. Therefore, the reconstruction of past-seawater properties and their impact on marine ecosystems is an important way to investigate the underlying mechanisms and to better constrain the effects of possible changes in the future ocean. Cold-water coral (CWC) ecosystems are biodiversity hotspots. Living close to aragonite-undersaturation, these corals serve as living laboratories as well as archives to reconstruct the boundary conditions of their calcification under the carbonate system of the ocean. We investigated the reef-building CWC Lophelia pertusa as a recorder of intermediate ocean seawater pH. This species-specific field calibration is based on a unique sample set of live in-situ collected L. pertusa and corresponding seawater samples. These data demonstrate that uranium speciation and skeletal incorporation for azooxanthellate scleractinian CWCs is pH dependent. However, this also indicates that internal pH up-regulation of the coral does not play a role in uranium incorporation into the majority of the skeleton of L. pertusa. This study suggests L. pertusa provides a new archive for the reconstruction of intermediate water mass pH and hence may help to constrain tipping points for ecosystem dynamics and evolutionary characteristics in a changing ocean.


2012 ◽  
Vol 109 (50) ◽  
pp. 20303-20308 ◽  
Author(s):  
H. K. White ◽  
P.-Y. Hsing ◽  
W. Cho ◽  
T. M. Shank ◽  
E. E. Cordes ◽  
...  

2008 ◽  
Vol 55 (8) ◽  
pp. 1048-1062 ◽  
Author(s):  
Andrew J. Davies ◽  
Max Wisshak ◽  
James C. Orr ◽  
J. Murray Roberts

2012 ◽  
Vol 9 (3) ◽  
pp. 1253-1265 ◽  
Author(s):  
P. Sabatier ◽  
J.-L. Reyss ◽  
J. M. Hall-Spencer ◽  
C. Colin ◽  
N. Frank ◽  
...  

Abstract. Here we show the use of the 210Pb-226Ra excess method to determine the growth rate of two corals from the world's largest known cold-water coral reef, Røst Reef, north of the Arctic circle off Norway. Colonies of each of the two species that build the reef, Lophelia pertusa and Madrepora oculata, were collected alive at 350 m depth using a submersible. Pb and Ra isotopes were measured along the major growth axis of both specimens using low level alpha and gamma spectrometry and trace element compositions were studied. 210Pb and 226Ra differ in the way they are incorporated into coral skeletons. Hence, to assess growth rates, we considered the exponential decrease of initially incorporated 210Pb, as well as the increase in 210Pb from the decay of 226Ra and contamination with 210Pb associated with Mn-Fe coatings that we were unable to remove completely from the oldest parts of the skeletons. 226Ra activity was similar in both coral species, so, assuming constant uptake of 210Pb through time, we used the 210Pb-226Ra chronology to calculate growth rates. The 45.5 cm long branch of M. oculata was 31 yr with an average linear growth rate of 14.4 ± 1.1 mm yr−1 (2.6 polyps per year). Despite cleaning, a correction for Mn-Fe oxide contamination was required for the oldest part of the colony; this correction corroborated our radiocarbon date of 40 yr and a mean growth rate of 2 polyps yr−1. This rate is similar to the one obtained in aquarium experiments under optimal growth conditions. For the 80 cm-long L. pertusa colony, metal-oxide contamination remained in both the middle and basal part of the coral skeleton despite cleaning, inhibiting similar age and growth rate estimates. The youngest part of the colony was free of metal oxides and this 15 cm section had an estimated a growth rate of 8 mm yr−1, with high uncertainty (~1 polyp every two to three years). We are less certain of this 210Pb growth rate estimate which is within the lowermost ranges of previous growth rate estimates. We show that 210Pb-226Ra dating can be successfully applied to determine the age and growth rate of framework-forming cold-water corals if Mn-Fe oxide deposits can be removed. Where metal oxides can be removed, large M. oculata and L. pertusa skeletons provide archives for studies of intermediate water masses with an up to annual time resolution and spanning over many decades.


Sign in / Sign up

Export Citation Format

Share Document