scholarly journals The phase space of last glacial inception for the Northern Hemisphere from coupled ice and climate modelling

Author(s):  
Taimaz Bahadory ◽  
Lev Tarasov ◽  
Heather Andres

Abstract. We present an ensemble of Last Glacial Inception (LGI) simulations for the Northern Hemisphere that largely captures inferred ice volume changes within proxy uncertainties. This ensemble was performed with LCice 1.0, a coupled ice sheet and climate model, varying parameters of both climate and ice sheet components, as well as the coupling between them. Certain characteristics of the spatio-temporal pattern of ice growth and subsequent retreat in both North America (NA) and Eurasia (EA) are sensitive to parameter changes, especially with respect to regional rates of ice growth and retreat. We find that the initial inception of ice over NA and EA is best characterized by the nucleation of ice at high latitude and high elevation sites. Subsequent spreading and merger along with large-scale conversion of snow fields dominate in different sectors. The latter plays an important role in the merging of eastern and western ice regions in NA. The inception peak ice volume in the ensemble occurs approximately at 111 ka and therefore lags the summer 60° N insolation minimum by more than 3 kyr. Ice volumes consistently peak earlier over EA than NA. The inception peak in North America is characterized by a merged Laurentide and Cordilleran ice sheet, with Davis Strait covered in ice in 80 % of simulations. Ice also bridges Greenland and Iceland in all runs by 114 ka and therefore blocks Denmark Strait. This latter feature would thereby divert the East Greenland Current and Denmark Strait overflow and thereby potentially have a significant impact on ocean circulation. The Eurasian ice sheet at its inception peak varies across ensemble runs between a continuous ice sheet to multiple smaller ice caps. In both continents, the colder high latitudes (Ellsmere and Svalbard) tend to grow ice through the entire simulation (to 102 ka), while lower latitudes lose ice after 110 ka. We find temperature decreases over the initial phases of the inception lead to the expansion of NA ice sheet area, and that subsequent precipitation increases contribute to its thickening. EA ice sheet area also expands with decreasing temperatures, but sea ice limits any increases in precipitation, leading to an earlier retreat away from the EA maximum ice sheet volume. We also examine the extent to which the capture of both LGI ice growth and retreat constrains the coupled ice/climate model sensitivity to changing atmospheric pCO2. For a standard transient climate response experiment (1 % increase in pCO2 until doubled), warming ranges between 0.6–2.0 °C for our initial set of 500 simulations without LGI constraint. The warming is reduced to 0.7–1.4 °C for the 55 member ensemble that captures both LGI ice growth and retreat. This therefore underlines the potential value of fully coupled ice/climate modelling of last glacial inception to constrain future climate change.

2021 ◽  
Vol 17 (1) ◽  
pp. 397-418
Author(s):  
Taimaz Bahadory ◽  
Lev Tarasov ◽  
Heather Andres

Abstract. We present an ensemble of last glacial inception (LGI) simulations for the Northern Hemisphere that captures a significant fraction of inferred ice volume changes within proxy uncertainties. This ensemble was performed with LCice 1.0, a coupled ice sheet and climate model, varying parameters of both climate and ice sheet components, as well as the coupling between them. Certain characteristics of the spatiotemporal pattern of ice growth and subsequent retreat in both North America (NA) and Eurasia (EA) are sensitive to parameter changes while others are not. We find that the initial inception of ice over NA and EA is best characterized by the nucleation of ice at high-latitude and high-elevation sites. Subsequent spreading and merger along with large-scale conversion of snowfields dominate in different sectors. The latter plays an important role in the merging of eastern and western ice regions in NA. The inception peak ice volume in the ensemble occurs approximately at 111 ka and therefore lags the summer 60∘ N insolation minimum by more than 3 kyr. Ice volumes consistently peak earlier over EA than NA. The inception peak in North America is characterized by a merged Laurentide and Cordilleran ice sheet, with the Davis Strait covered in ice in ∼80 % of simulations. Ice also bridges Greenland and Iceland in all runs by 114 ka and therefore blocks the Denmark Strait. This latter feature would thereby divert the East Greenland Current and Denmark Strait overflow with a potentially significant impact on ocean circulation. The Eurasian ice sheet at its inception peak varies across ensemble runs between a continuous ice sheet and multiple smaller ice caps. In both continents, the colder high latitudes (i.e. Ellesmere and Svalbard) tend to grow ice through the entire simulation (to 102 ka), while lower latitudes lose ice after ∼110 ka. We find temperature decreases over the initial phases of the inception lead to the expansion of NA ice sheet area and that subsequent precipitation increases contribute to its thickening. EA ice sheet area also expands with decreasing temperatures, but sea ice limits any increases in precipitation, leading to an earlier retreat away from the EA maximum ice sheet volume. We also examine the extent to which the capture of both LGI ice growth and retreat constrains the coupled ice–climate model sensitivity to changing atmospheric pCO2. The 55-member sub-ensemble that meets our criteria for “acceptable” ice growth and retreat has an equilibrium climate sensitivity lower bound that is 0.3 ∘C higher than that of the full ensemble. This suggests some potential value of fully coupled ice–climate modelling of the last glacial inception to constrain future climate change.


2009 ◽  
Vol 5 (3) ◽  
pp. 329-345 ◽  
Author(s):  
S. Bonelli ◽  
S. Charbit ◽  
M. Kageyama ◽  
M.-N. Woillez ◽  
G. Ramstein ◽  
...  

Abstract. A 2.5-dimensional climate model of intermediate complexity, CLIMBER-2, fully coupled with the GREMLINS 3-D thermo-mechanical ice sheet model is used to simulate the evolution of major Northern Hemisphere ice sheets during the last glacial-interglacial cycle and to investigate the ice sheets responses to both insolation and atmospheric CO2 concentration. This model reproduces the main phases of advance and retreat of Northern Hemisphere ice sheets during the last glacial cycle, although the amplitude of these variations is less pronounced than those based on sea level reconstructions. At the last glacial maximum, the simulated ice volume is 52.5×1015 m3 and the spatial distribution of both the American and Eurasian ice complexes is in reasonable agreement with observations, with the exception of the marine parts of these former ice sheets. A set of sensitivity studies has also been performed to assess the sensitivity of the Northern Hemisphere ice sheets to both insolation and atmospheric CO2. Our results suggest that the decrease of summer insolation is the main factor responsible for the early build up of the North American ice sheet around 120 kyr BP, in agreement with benthic foraminifera δ18O signals. In contrast, low insolation and low atmospheric CO2 concentration are both necessary to trigger a long-lasting glaciation over Eurasia.


2018 ◽  
Author(s):  
Constantijn J. Berends ◽  
Bas de Boer ◽  
Roderik S. W. van de Wal

Abstract. Fully coupled ice-sheet-climate modelling over 10,000–100,000-year time scales on high spatial and temporal resolution remains beyond the capability of current computational systems. Hybrid GCM-ice-sheet modelling offers a middle ground, balancing the need to accurately capture both long-term processes, in particular circulation driven changes in precipitation, and processes requiring a high spatial resolution like ablation. Here, we present and evaluate a model set-up that forces the ANICE 3D thermodynamic ice-sheet-shelf model calculating all ice on Earth, with pre-calculated output from several steady-state simulations with the HadCM3 general circulation model (GCM), using a so-called matrix method of coupling both components, where simulations with various levels of pCO2 and ice-sheet configuration are combined to form a time-continuous transient climate forcing consistent with the modelled ice-sheets. We address the difficulties in downscaling low-resolution GCM output to the higher-resolution grid of an ice-sheet model, and account for differences between GCM and ice-sheet model surface topography ranging from interglacial to glacial conditions. As a benchmark experiment to assess the validity of this model set-up, we perform a simulation of the entire last glacial cycle, from 120 kyr ago to present-day. The simulated eustatic sea-level drop at the Last Glacial maximum (LGM) for the combined Antarctic, Greenland, Eurasian and North-American ice-sheets amounts to 100 m, in line with many other studies. The simulated ice-sheets at LGM agree well with the ICE-5G reconstruction and the more recent DATED-1 reconstruction in terms of total volume and geographical location of the ice sheets. Moreover, modelled benthic oxygen isotope abundance and the relative contributions from global ice volume and deep-water temperature agree well with available data, as do surface temperature histories for the Greenland and Antarctic ice-sheets. This model strategy can be used to create time-continuous ice-sheet distribution and sea-level reconstructions for geological periods up to several millions of years in duration, capturing climate model driven variations in the mass balance of the ice sheet.


1995 ◽  
Vol 21 ◽  
pp. 96-102 ◽  
Author(s):  
I. Marsiat

Past modelling studies have shown that the energy balance of the ice-sheet surface is of primary importance in representing the 100 000 year glacial cycle. In particular, modelling of the net mass-balance function is an important part of coupled ice-sheet/climate models. We conduct a series of palaeoclimatic simulations with a vertically integrated ice-flow model coupled to the two-dimensional statistical-dynamical LLN (Louvain-la-Neuve) climate model. The models are coupled through a land-surface model which computes seasonal cycles of surface temperature and precipitation at the real altitude of the surface and evaluates the annual snow and/or ice-mass budget. The present-day climate of the Northern Hemisphere, the Greenland mass balance and the snowfield characteristics are quite well represented despite the relative simplicity of the model. Total ice-volume and sea-level variations during the last glacial cycle are well simulated. This suggests that the physical mechanisms included in the models are sufficient to explain the most striking features of the ice-age cycle. Introducing an improved and more detailed topography improves the simulation of the total ice volume but fails to correct inadequacies in the simulated ice distribution on the surface of the Earth.


2007 ◽  
Vol 3 (1) ◽  
pp. 15-37 ◽  
Author(s):  
S. Charbit ◽  
C. Ritz ◽  
G. Philippon ◽  
V. Peyaud ◽  
M. Kageyama

Abstract. A 3-dimensional thermo-mechanical ice-sheet model is used to simulate the evolution of the Northern Hemisphere ice sheets through the last glacial-interglacial cycle. The ice-sheet model is forced by the results from six different atmospheric general circulation models (AGCMs). The climate evolution over the period under study is reconstructed using two climate equilibrium simulations performed for the Last Glacial Maximum (LGM) and for the present-day periods and an interpolation through time between these snapshots using a glacial index calibrated against the GRIP δ18O record. Since it is driven by the timing of the GRIP signal, the temporal evolution of the ice volume and the ice-covered area is approximately the same from one simulation to the other. However, both ice volume curves and spatial distributions of the ice sheets present some major differences from one AGCM forcing to the other. The origin of these differences, which are most visible in the maximum amplitude of the ice volume, is analyzed in terms of differences in climate forcing. This analysis allows for a partial evaluation of the ability of GCMs to simulate climates consistent with the reconstructions of past ice sheets. Although some models properly reproduce the advance or retreat of ice sheets in some specific areas, none of them is able to reproduce both North American or Eurasian ice complexes in full agreement with observed sea-level variations and geological data. These deviations can be attributed to shortcomings in the climate forcing and in the LGM ice-sheet reconstruction used as a boundary condition for GCM runs, but also to missing processes in the ice-sheet model itself.


1997 ◽  
Vol 25 ◽  
pp. 333-339 ◽  
Author(s):  
Philippe Huybrechts ◽  
Stephen T’siobbel

A quasi-three-dimensional (3-D) climate model (Sellers, 1983) was used to simulate the climate of the Last Glacial Maximum (LGM) in order to provide climatic input for the modelling of the Northern Hemisphere ice sheets. The climate model is basically a coarse-gridded general circulation (GCM) with simplified dynamics, and was subject to appropriate boundary conditions for ice-sheet elevation, atmospheric CO2concentration and orbital parameters. When compared with the present-daysimulation, the simulated climate at the Last Glacial Maximum is characterized by a global annual cooling of 3.5°C and a reduction in global annualprecipitation of 7.5%, which agrees well with results from other, more complex GCMs. Also the patterns of temperature change compare fairly with mostother GCM results, except for a smaller cooling over the North Atlantic and the larger cooling predicted for the summer rather than for the winter over Eurasia.The climate model is able to simulate changes in Northern Hemisphere tropospheric circulation, yielding enhanced westerlies in the vicinity of the Laurentide and Eurasian ice sheets. However, the simulated precipitation patterns are less convincing, and show a distinct mean precipitation increase over the Laurentide ice sheet. Nevertheless, when using the mean-monthly fields of LGM minus present-day anomalies of temperature and precipitation rate to drive a three-dimensional thermomechanical ice-sheet model, it was demonstrated that within realistic bounds of the ice-flow and mass-balance parameters, veryreasonable reconstructions of the Last Glacial Maximum ice sheets could be obtained.


2020 ◽  
Author(s):  
Kenji Izumi ◽  
Paul Paul Valdes ◽  
Ruza Ivanovic ◽  
Lauren Gregoire

<p>The Last Glacial Maximum (LGM; 21,000 yr before present) is a target period of the paleoclimate simulations in the Coupled Model Intercomparison Project Phase 6 – the Paleoclimate Modeling Intercomparison Project Phase 4 (CMIP6-PMIP4) because of abundant paleoenvironmental data in continental, ice, and marine indicators. The LGM was a period of low atmospheric trace gases when large ice sheets covered over North America and Scandinavia. Paleoclimate reconstructions and modeling studies suggest that the Northern Hemisphere climate differed from today.</p><p>In this study, we used the coupled atmosphere and ocean model HadCM3B-M1 in order to investigate the impacts of the main LGM boundary condition changes, in particular, the ICE-6G_C, GLAC-1D, and PMIP3 ice-sheet reconstructions following the PMIP4 protocol, on the mean state of the climate over the Northern Hemisphere. First, we check the surface albedo forcing and feedback with a simplified partial derivative method and assess the surface temperature changes and their composition using a simple surface energy balance equation. Then, we investigate how patterns of stationary waves, westerly jet precipitation over the Northern Hemisphere change in response to the LGM ice-sheet configuration. Finally, we implement a paleo data-model comparison for validation of the large-scale climate changes over the Northern Hemisphere at the LGM. The wintertime stationary waves have the largest amplitude and different responses among the experiments, while stationary waves in summer are weak and similar responses. The LGM simulation with the ICE-6G_C better captures features of the LGM climate, but compared to the reconstructions, the climate model tends to overestimate cooling in summer and underestimate cooling in winter and simulate wetter conditions over the Northern Hemisphere.  </p>


1993 ◽  
Vol 341 (1297) ◽  
pp. 253-261 ◽  

A two-dimensional model which links the atmosphere, the mixed layer of the ocean, the sea ice, the continents, the ice sheets and their underlying bedrock has been used to test the Milankovitch theory over the last two glacial-interglacial cycles. A series of sensitivity analyses have allowed us to understand better the internal mechanisms which drive the simulated climate system and in particular the feedbacks related to surface albedo and water vapour. It was found that orbital variations alone can induce, in such a system, feedbacks sufficient to generate the low frequency p art of the climatic variations over the last 122 ka. These simulated variations at the astronomical timescale are broadly in agreement with reconstructions of ice-sheet volume and of sea level independently obtained from geological data. Imperfections in the stimulated climate were the insufficient southward extent of the ice sheets and the too small hemispheric cooling at the last glacial maximum . These deficiencies were partly remedied in a further experiment by using the time-dependent atmospheric CO2 concentration given by the Vostok ice core in addition to the astronomical forcing. In this transient simulation, 70% of the Northern Hemisphere ice volume is related to the astronomical forcing and the related changes in the albedo, the rem aining 30% being due to the CO 2 changes. Analysis of the processes involved shows that variations of ablation are more important for the ice-sheet response than are variations of snow precipitation. A key mechanism in the deglaciation after the last glacial maxim um appears to be the ‘ageing’ of snow which significantly decreases its albedo. The other factors which play an important role are ice-sheet altitude, insolation, taiga cover, ice-albedo feedback, ice-sheet configuration (‘continentality’ and ‘desert’ effect), isostatic rebound, CO 2 changes and tem perature-water vapour feedback. Numerical experiments have also been carried out with a one-dimensional radiative-convective model in order to quantify the influence of the CO 2 changes and of the water vapour feedback on the climate evolution of the Northern Hemisphere over the last 122 ka. Results of these experiments indicate that 67% of the simulated cooling at the last glacial maximum can be attributed to the astronomical forcing and the subsequent surface albedo increase, the remaining 33% being associated with the reduced CO 2 concentration. Moreover, the water vapour feedback explains 40% of the simulated cooling in all the experiments done. The transient response of the clim ate system to both the astronomical and CO 2 forcing was also simulated by the LLN (Louvain-la-Neuve) 2.5-dimensional model over the two last glacial-interglacial cycles. It is particularly significant that spectral analysis of the simulated Northern Hemisphere global ice volume variations reproduces correctly the relative intensity of the peaks at the orbital frequencies. Except for variations with timescales shorter than 5 ka, the simulated long-term variations of total ice volume are comparable to that reconstructed from deep sea cores. For example, the model simulates glacial maxima of similar amplitudes at 134 ka BP and 15 ka BP, followed by abrupt deglaciations. The complete deglaciation of the three main Northern Hemisphere ice sheets, which is simulated around 122 ka BP, is in partial disagreement with reconstructions indicating that the Greenland ice sheet survived during the Eemian interglacial. The continental ice volume variations during the last 122 ka of the 200 ka simulation are, however, not significantly affected by this shortcoming.


1995 ◽  
Vol 21 ◽  
pp. 96-102
Author(s):  
I. Marsiat

Past modelling studies have shown that the energy balance of the ice-sheet surface is of primary importance in representing the 100 000 year glacial cycle. In particular, modelling of the net mass-balance function is an important part of coupled ice-sheet/climate models. We conduct a series of palaeoclimatic simulations with a vertically integrated ice-flow model coupled to the two-dimensional statistical-dynamical LLN (Louvain-la-Neuve) climate model. The models are coupled through a land-surface model which computes seasonal cycles of surface temperature and precipitation at the real altitude of the surface and evaluates the annual snow and/or ice-mass budget. The present-day climate of the Northern Hemisphere, the Greenland mass balance and the snowfield characteristics are quite well represented despite the relative simplicity of the model. Total ice-volume and sea-level variations during the last glacial cycle are well simulated. This suggests that the physical mechanisms included in the models are sufficient to explain the most striking features of the ice-age cycle. Introducing an improved and more detailed topography improves the simulation of the total ice volume but fails to correct inadequacies in the simulated ice distribution on the surface of the Earth.


2016 ◽  
Vol 62 (234) ◽  
pp. 607-622 ◽  
Author(s):  
CLAUDIA WEKERLE ◽  
FLORENCE COLLEONI ◽  
JENS-OVE NÄSLUND ◽  
JENNY BRANDEFELT ◽  
SIMONA MASINA

ABSTRACTNumerous ice-sheet reconstructions of the last glacial cycle have been proposed, however due to limited geological evidence, reconstructing older Northern Hemisphere ice sheets remains a difficult exercise. Here we focus on the penultimate glacial maximum (PGM; ~140 ka BP) over the Northern Hemisphere. While some evidence of the PGM Eurasian ice-sheet extent were found, this is not the case for the corresponding Laurentide ice sheet. To improve the glaciological reconstructions of the PGM Northern Hemisphere ice sheets, we explore the parameter space of ice-sheet model uncertainties and carry out numerous univariate ice-sheet steady-state sensitivity simulations. We use two PGM climate simulations to force the ice-sheet model, differing in the prescribed Laurentide ice topography (small and large). The simulated Northern Hemisphere ice volume ranges from 124.7 to 152 m SLE when using the climate accounting for a small Laurentide ice sheet, which is compatible with global sea-level reconstructions of this period (−92 to −150 m). Conversely, using the climate simulation with a Laurentide ice sheet comparable in size to that of the last glacial maximum results in too large ice volumes. Changes in basal drag provide the upper bound ice volume of our experiments, whereas changes in the distribution of ice streams provide the lower bound.


Sign in / Sign up

Export Citation Format

Share Document