scholarly journals The East Asian winter monsoon variability in response to precession and inter-hemispheric heat balance

2013 ◽  
Vol 9 (4) ◽  
pp. 4229-4261
Author(s):  
M. Yamamoto ◽  
H. Sai ◽  
M.-T. Chen ◽  
M. Zhao

Abstract. The response of Asian monsoon variability to orbital forcing is still unclear, and all hypotheses are controversial. We present a record of the sea surface temperature difference (ΔSST) between the South China Sea and the other Western Pacific Warm Pool regions as a proxy for the intensity of the Asian winter monsoon, because the winter cooling of the South China Sea is caused by the cooling of surface water at the northern margin and the southward advection of cooled water due to winter monsoon winds. The ΔSST showed significant precession cycles during the last 150 kyr. In the precession cycle, the maximum winter monsoon intensity shown by the ΔSST corresponded to the May perihelion and was delayed behind the maximum ice volume. The East Asian winter monsoon was anti-phase with the Indian summer monsoon and the summer monsoon precipitation in central Japan. The timing of the maximum phase of the East Asian winter monsoon was different from previous results in terms of the March perihelion (ice volume maxima) and June perihelion (minimum of Northern Hemisphere winter insolation). We infer that the variation of the East Asian winter monsoon was caused by a physical mechanism of inter-hemispheric heat balance. The East Asian winter monsoon was intensified by the Northern Hemisphere cooling, which was caused by the combined effect of cooling by the ice volume forcing and the decrease in winter insolation, or by decreased heat transfer from the Southern Hemisphere to the Northern Hemisphere owing to the weak Indian summer monsoon at the May perihelion.

2013 ◽  
Vol 26 (2) ◽  
pp. 622-635 ◽  
Author(s):  
Wen Chen ◽  
Juan Feng ◽  
Renguang Wu

Abstract The present study investigates the roles of El Niño–Southern Oscillation (ENSO) and the Pacific decadal oscillation (PDO) in the relationship between the East Asian winter monsoon (EAWM) and the following East Asian summer monsoon (EASM). The variability of the EAWM is divided into an ENSO-related part named EAWMEN and an ENSO-unrelated part named EAWMres. Corresponding to a weak EAWMEN, an anomalous low-level anticyclone forms over the western North Pacific (WNP) and persists from winter to the following summer. This anticyclone enhances southerlies over the coast of East Asia in summer. Hence, a weak EAWMEN tends to be followed by a strong EASM and vice versa. As such, a link is established between the EAWMEN and the EASM. The persistence of this WNP anticyclone may be mainly attributed to the sea surface temperature anomalies associated with the ENSO-related EAWM part in the tropical Indian Ocean and the extratropical North Pacific. In contrast, corresponding to a weak EAWMres, the anomalous WNP anticyclone is only seen in winter, and there is no obvious relationship between the EAWMres and the following EASM. Therefore, the observed EAWM–EASM relationship is dominated by the winter monsoon variability associated with ENSO. It is found that the EAWMEN–EASM relationship is modulated by the PDO. There tends to be a much stronger EASM after a weak EAWMEN during the positive PDO phases than during the negative PDO phases.


2013 ◽  
Vol 9 (6) ◽  
pp. 2777-2788 ◽  
Author(s):  
M. Yamamoto ◽  
H. Sai ◽  
M.-T. Chen ◽  
M. Zhao

Abstract. The response of the East Asian winter monsoon variability to orbital forcing is still unclear, and hypotheses are controversial. We present a 150 000 yr record of sea surface temperature difference (ΔSST) between the South China Sea and other Western Pacific Warm Pool regions as a proxy for the intensity of the Asian winter monsoon, because the winter cooling of the South China Sea is caused by the cooling of surface water at the northern margin and the southward advection of cooled water due to winter monsoon winds. The ΔSST showed dominant precession cycles during the past 150 000 yr. The ΔSST varies at precessional band and supports the hypothesis that monsoon is regulated by insolation changes at low-latitudes (Kutzbach, 1981), but contradicts previous suggestions based on marine and loess records that eccentricity controls variability on glacial–interglacial timescales. Maximum winter monsoon intensity corresponds to the May perihelion at precessional band, which is not fully consistent with the Kutzbach model of maximum winter monsoon at the June perihelion. Variation in the East Asian winter monsoon was anti-phased with the Indian summer monsoon, suggesting a linkage of dynamics between these two monsoon systems on an orbital timescale.


2011 ◽  
Vol 28 (6) ◽  
pp. 1345-1356 ◽  
Author(s):  
Hongming Yan ◽  
Hui Yang ◽  
Yuan Yuan ◽  
Chongyin Li

Sign in / Sign up

Export Citation Format

Share Document