Quantification of past arctic herbivore populations from ancient sedimentary DNA by hybridization capture enrichment, metabarcoding, and droplet digital PCR

Author(s):  
Peter Seeber ◽  
Ulrike Herzschuh ◽  
Beth Shapiro ◽  
Hendrik Poinar ◽  
Duane Froese ◽  
...  

<p>The Arctic is currently experiencing dramatic ecosystem changes with immediate effects on biodiversity. Sedimentary ancient DNA is a unique and valuable source of information on ecosystem changes over a long temporal scale. Understanding these past changes may help predict the relative impacts of climate change, herbivory, and anthropogenic effects on present ecosystems. In the BiodivERsA project “Future ArcTic Ecosystems” (FATE), we aim to assess changes in past herbivore abundance over large spatial (circumarctic) and temporal (Last Glacial Maximum until today) scales using three (semi-)quantitative methods on sedimentary ancient DNA of plants, herbivores, and herbivore proxies (i.e. coprophilous fungi and parasites) – metabarcoding, hybridization capture enrichment, and droplet digital PCR (ddPCR).</p><p>Metabarcoding was applied to DNA of plants and also of coprophilous fungi as proxies of herbivore abundance. This approach is an established and important tool for assessing biodiversity from recent environmental DNA; however, quantification of specific taxa may be complicated due to inherent methodological biases (e.g. amplification efficiency due to primer bias), and our current understanding of the factors affecting potential quantification by metabarcoding is still limited. Moreover, ancient DNA is highly fragmented, which may prevent PCR amplification altogether. As an alternative, target enrichment by hybridization capture is a method that does not depend on target PCR amplification and is typically not affected by DNA fragmentation. Furthermore, hybridization capture can be used to target numerous genetic markers of a vast range of highly diverse taxa. We are using hybridization capture to enrich DNA of a range of herbivore species and numerous proxy organisms. Metabarcoding and hybridization capture can be applied to a vast taxonomic range and may be used quantitatively based on relative sequencing read abundance; however, the respective read abundance may be confounded by random and systematic errors and other biases. We are therefore using an additional quantification method – ddPCR – on several selected taxa, which is taxon-specific but facilitates highly accurate quantification of template DNA molecules in a given sample. The combined taxonomic and quantitative results of these three approaches are used to generate highly resolved datasets on past vegetation and herbivores, which allows us to reconstruct past vegetation changes over large spatial (circumarctic) and temporal (Last Glacial Maximum until today) scales.</p><p>Detailed inferences on herbivore abundance and reconstructing past ecological conditions may be important for ecosystem management and conservation in the face of accelerating changes in Arctic ecosystems due to global climate change.</p>

2021 ◽  
Author(s):  
Barbara von Hippel ◽  
Kathleen R. Stoof-Leichsenring ◽  
Luise Schulte ◽  
Peter Seeber ◽  
Laura S. Epp ◽  
...  

<p>Climate change has a great impact on boreal ecosystems including Siberian larch forests. As a consequence of warming, larch grow is possible in areas where climate used to be too cold, leading to a shift of the tree line into more arctic regions. Most plants co-exist in symbiosis with heterotrophic organisms surrounding their root system. In arctic ecosystems, mycorrhizal fungi are a prerequisite for plant establishment and survival because they support nutrient uptake from nutrient-poor soils and maintain the water supply. Until now, however, knowledge about the co-variation of vegetation and fungi is poor. Certainly, the understanding of dynamic changes in biotic interactions is important to understand adaptation mechanisms of ecosystems to climate change.</p><p>We investigated sedimentary ancient DNA from Lake Levinson Lessing, Taymyr Peninsula (Arctic Siberia, tundra), Lake Lama, Lake Kyutyunda (both northern Siberia, tundra-taiga transition zone) and Lake Bolshoe Toko (southern Siberia, forest area) covering the last about 45.000 years using ITS primers for fungi along with the chloroplast P6 loop marker for vegetation metabarcoding. We found changes in the fungal communities that are in broad agreement with vegetation turnover. To our knowledge, this is the first broad ecological study on lake sediment cores to analyze fungal biodiversity in relation to vegetation change on millennial time scales.</p>


2020 ◽  
Vol 169 ◽  
pp. 115213 ◽  
Author(s):  
Michael A. Jahne ◽  
Nichole E. Brinkman ◽  
Scott P. Keely ◽  
Brian D. Zimmerman ◽  
Emily A. Wheaton ◽  
...  

Author(s):  
Christian Schulze ◽  
Anne-Catrin Geuthner ◽  
Dietrich Mäde

AbstractFood fraud is becoming a prominent topic in the food industry. Thus, valid methods for detecting potential adulterations are necessary to identify instances of food fraud in cereal products, a significant component of human diet. In this work, primer–probe systems for real-time PCR and droplet digital PCR (ddPCR) for the detection of these cereal species: bread wheat (together with spelt), durum wheat, rye and barley for real-time PCR and ddPCR were established, optimized and validated. In addition, it was projected to validate a molecular system for differentiation of bread wheat and spelt; however, attempts for molecular differentiation between common wheat and spelt based on the gene GAG56D failed because of the genetic variability of the molecular target. Primer–probe systems were further developed and optimized on the basis of alignments of DNA sequences, as well as already developed PCR systems. The specificity of each system was demonstrated on 10 (spelt), 11 (durum wheat and rye) and 12 (bread wheat) reference samples. Specificity of the barley system was already proved in previous work. The calculated limits of detection (LOD95%) were between 2.43 and 4.07 single genome copies in real-time PCR. Based on the “three droplet rule”, the LOD95% in ddPCR was calculated to be 9.07–13.26 single genome copies. The systems were tested in mixtures of flours (rye and common wheat) and of semolina (durum and common wheat). The methods proved to be robust with regard to the tested conditions in the ddPCR. The developed primer–probe systems for ddPCR proved to be effective in quantitatively detecting the investigated cereal species rye and common wheat in mixtures by taking into account the haploid genome weight and the degree of milling of a flour. This method can correctly detect proportions of 50%, 60% and 90% wholemeal rye flour in a mixture of wholemeal common wheat flour. Quantitative results depend on the DNA content, on ploidy of cereal species and are also influenced by comminution. Hence, the proportion of less processed rye is overestimated in higher processed bread wheat and adulteration of durum wheat by common wheat by 1–5% resulted in underestimation of common wheat.


Biomedicines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 813
Author(s):  
Michele Manganelli ◽  
Ilaria Grossi ◽  
Manuela Ferracin ◽  
Paola Guerriero ◽  
Massimo Negrini ◽  
...  

Human hepatocellular carcinoma (HCC) is the most frequent primary tumor of the liver and the third cause of cancer-related deaths. The multikinase inhibitor sorafenib is a systemic drug for unresectable HCC. The identification of molecular biomarkers for the early diagnosis of HCC and responsiveness to treatment are needed. In this work, we performed an exploratory study to investigate the longitudinal levels of cell-free long ncRNA GAS5 and microRNAs miR-126-3p and -23b-3p in a cohort of 7 patients during the period of treatment with sorafenib. We used qPCR to measure the amounts of GAS5 and miR-126-3p and droplet digital PCR (ddPCR) to measure the levels of miR-23b-3p. Patients treated with sorafenib displayed variable levels of GAS5, miR-126-3p and miR-23b-3p at different time-points of follow-up. miR-23b-3p was further measured by ddPCR in 37 healthy individuals and 25 untreated HCC patients. The amount of miR-23b-3p in the plasma of untreated HCC patients was significantly downregulated if compared to healthy individuals. The ROC curve analysis underlined its diagnostic relevance. In conclusion, our results highlight a potential clinical significance of circulating miR-23b-3p and an exploratory observation on the longitudinal plasmatic levels of GAS5, miR-126-3p and miR-23b-3p during sorafenib treatment.


2021 ◽  
pp. 112329
Author(s):  
Dumas Deconinck ◽  
Kris Hostens ◽  
Isabel Taverniers ◽  
Filip A.M. Volckaert ◽  
Johan Robbens ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document