Projected precipitation changes over China for global warming levels at 1.5°C and 2°C in an ensemble of regional climate simulations: Impact of bias-correction algorithms

Author(s):  
Lianyi Guo

<p>Four bias-correction methods, i.e. Gamma Cumulative Distribution Function (GamCDF), Quantile-Quantile Adjustment (QQadj), Equidistant CDF Matching (EDCDF) and Transform CDF (CDF-t), were applied to five daily precipitation datasets over China produced by LMDZ4-regional that was nested into five global climate models (GCMs), BCC-CSM1-1m, CNRM-CM5, FGOALS-g2, IPSL-CM5A-MR and MPI-ESM-MR, respectively. A unified mathematical framework can be used to define the four methods, which helps understanding their nature and essence in identifying the most reliable probability distributions of projected climate. CDF-t is shown to be the best bias-correction algorithm based on a comprehensive evaluation of different rainfall indices. Future precipitation projections corresponds to the global warming levels of 1.5°C and 2°C under RCP8.5 were obtained using the bias correction methods. The multi-algorithm and multi-model ensemble characteristics allow to explore the spreading of results, considered as a surrogate of climate projection uncertainty, and to attribute such uncertainties to different sources. It was found that the spread among bias-correction methods is smaller than that among dynamical downscaling simulations. The four bias-correction methods with CDF-t at the top all reduce the spread among the downscaled results. Future projection using CDF-t is thus considered having higher credibility.</p>

2020 ◽  
Author(s):  
Jeong-Bae Kim ◽  
Deg-Hyo Bae

Abstract. The changes in hydroclimatic extremes are assessed over the Asia monsoon region under 1.5 and 2.0 °C warming targets of global mean temperature above preindustrial levels based on a representative concentration pathway (RCP) 4.5 scenario. The subregions in this domain are defined by the Köppen climate classification method to identify regional climate characteristics. The change patterns of long-term hydroclimatic mean and hydroclimatic extreme among subregions are compared based on the multimodel ensemble (MME) of selected five global climate models (GCMs). Each GCM is bias corrected and then used as a meteorological forcing for a hydrological model. To simulate how the hydrologic system responds to 1.5 and 2.0 °C global warming targets, we select the variable infiltration capacity (VIC) model. The results of temperature extremes show significant change patterns over all climate zones. As the globe warms, the increasing warm extremes and the decreasing cold extremes with a high robustness occur more frequently over Asia. Meanwhile, changes in precipitation and runoff averages (and low runoff extremes) show large spatial variations in change patterns with little robustness based on intermodel agreement. Global warming is expected to significantly intensify maximum precipitation extremes in all climate zones. Regardless of regional climate characteristics, this behavior is expected to be enhanced under 2.0 °C compare to 1.5 °C warming scenario and cause the likelihood of flood risk. The spatial extent and magnitude of change patterns in runoff are modulated by those of change patterns in precipitation. More importantly, an extra 0.5 °C of global warming also leads to amplified change signals and more robust change patterns in hydroclimatic extremes, especially in cold (and polar) climate zones. The results of this study demonstrate that the clear changes in regional hydroclimatic extremes under warmer conditions over Asia, and hydroclimatic sensitivities differ based on regional climate characteristics.


2012 ◽  
Vol 12 (8) ◽  
pp. 3601-3610 ◽  
Author(s):  
P. Liu ◽  
A. P. Tsimpidi ◽  
Y. Hu ◽  
B. Stone ◽  
A. G. Russell ◽  
...  

Abstract. Dynamical downscaling has been extensively used to study regional climate forced by large-scale global climate models. During the downscaling process, however, the simulation of regional climate models (RCMs) tends to drift away from the driving fields. Developing a solution that addresses this issue, by retaining the large scale features (from the large-scale fields) and the small-scale features (from the RCMs) has led to the development of "nudging" techniques. Here, we examine the performance of two nudging techniques, grid and spectral nudging, in the downscaling of NCEP/NCAR data with the Weather Research and Forecasting (WRF) Model. The simulations are compared against the results with North America Regional Reanalysis (NARR) data set at different scales of interest using the concept of similarity. We show that with the appropriate choice of wave numbers, spectral nudging outperforms grid nudging in the capacity of balancing the performance of simulation at the large and small scales.


2020 ◽  
Vol 59 (2) ◽  
pp. 207-235 ◽  
Author(s):  
Lei Zhang ◽  
YinLong Xu ◽  
ChunChun Meng ◽  
XinHua Li ◽  
Huan Liu ◽  
...  

AbstractIn aiming for better access to climate change information and for providing climate service, it is important to obtain reliable high-resolution temperature simulations. Systematic comparisons are still deficient between statistical and dynamic downscaling techniques because of their inherent unavoidable uncertainties. In this paper, 20 global climate models (GCMs) and one regional climate model [Providing Regional Climates to Impact Studies (PRECIS)] are employed to evaluate their capabilities in reproducing average trends of mean temperature (Tm), maximum temperature (Tmax), minimum temperature (Tmin), diurnal temperature range (DTR), and extreme events represented by frost days (FD) and heat-wave days (HD) across China. It is shown generally that bias of temperatures from GCMs relative to observations is over ±1°C across more than one-half of mainland China. PRECIS demonstrates better representation of temperatures (except for HD) relative to GCMs. There is relatively better performance in Huanghuai, Jianghuai, Jianghan, south Yangzi River, and South China, whereas estimation is not as good in Xinjiang, the eastern part of northwest China, and the Tibetan Plateau. Bias-correction spatial disaggregation is used to downscale GCMs outputs, and bias correction is applied for PRECIS outputs, which demonstrate better improvement to a bias within ±0.2°C for Tm, Tmax, Tmin, and DTR and ±2 days for FD and HD. Furthermore, such improvement is also verified by the evidence of increased spatial correlation coefficient and symmetrical uncertainty, decreased root-mean-square error, and lower standard deviation for reproductions. It is seen from comprehensive ranking metrics that different downscaled models show the most improvement across different climatic regions, implying that optional ensembles of models should be adopted to provide sufficient high-quality climate information.


Author(s):  
Liying Qiu ◽  
Eun-Soon Im

Abstract This study evaluates the resolution dependency of scaling precipitation with temperature from the perspective of the added value of high-resolution (5-km) dynamical downscaling using various kinds of long-term climate change projections over South Korea. Three CMIP5 Global Climate Models (GCMs) with different climate sensitivities, and one pseudo global warming (PGW) experiment, are downscaled by Weather Research and Forecasting (WRF) one-way double nested modeling system with convective parameterization for the reference (1976-2005) and future (2071-2100) periods under RCP8.5 scenario. A detailed comparison of the driving GCM/PGW, 20-km mother simulation, and 5-km nested simulation demonstrates improved representation of precipitation with increasing resolution not only in the spatial pattern and magnitude for both the mean and the extremes, but also in a more realistic representation of extreme precipitation’s sensitivities to temperature. According to the projected precipitation changes downscaled from both GCM ensemble and PGW, there will be intensified precipitation, particularly for the extremes, over South Korea under the warming, which is primarily contributed by CP increase that shows higher temperature sensitivity. This study also compares the extreme precipitation-temperature scaling relations within-epoch (apparent scaling) and between-epoch (climate scaling). It confirms that the magnitude and spatial pattern of the two scaling rates can be quite different, and the precipitation change over Korea under global warming is mainly controlled by thermodynamic factors.


2016 ◽  
Vol 11 (2) ◽  
pp. 670-678 ◽  
Author(s):  
N. S Vithlani ◽  
H. D Rank

For the future projections Global climate models (GCMs) enable development of climate projections and relate greenhouse gas forcing to future potential climate states. When focusing it on smaller scales it exhibit some limitations to overcome this problem, regional climate models (RCMs) and other downscaling methods have been developed. To ensure statistics of the downscaled output matched the corresponding statistics of the observed data, bias correction was used. Quantify future changes of climate extremes were analyzed, based on these downscaled data from two RCMs grid points. Subset of indices and models, results of bias corrected model output and raw for the present day climate were compared with observation, which demonstrated that bias correction is important for RCM outputs. Bias correction directed agreements of extreme climate indices for future climate it does not correct for lag inverse autocorrelation and fraction of wet and dry days. But, it was observed that adjusting both the biases in the mean and variability, relatively simple non-linear correction, leads to better reproduction of observed extreme daily and multi-daily precipitation amounts. Due to climate change temperature and precipitation will increased day by day.


Author(s):  
Aristita Busuioc ◽  
Alexandru Dumitrescu

This is an advance summary of a forthcoming article in the Oxford Research Encyclopedia of Climate Science. Please check back later for the full article.The concept of statistical downscaling or empirical-statistical downscaling became a distinct and important scientific approach in climate science in recent decades, when the climate change issue and assessment of climate change impact on various social and natural systems have become international challenges. Global climate models are the best tools for estimating future climate conditions. Even if improvements can be made in state-of-the art global climate models, in terms of spatial resolution and their performance in simulation of climate characteristics, they are still skillful only in reproducing large-scale feature of climate variability, such as global mean temperature or various circulation patterns (e.g., the North Atlantic Oscillation). However, these models are not able to provide reliable information on local climate characteristics (mean temperature, total precipitation), especially on extreme weather and climate events. The main reason for this failure is the influence of local geographical features on the local climate, as well as other factors related to surrounding large-scale conditions, the influence of which cannot be correctly taken into consideration by the current dynamical global models.Impact models, such as hydrological and crop models, need high resolution information on various climate parameters on the scale of a river basin or a farm, scales that are not available from the usual global climate models. Downscaling techniques produce regional climate information on finer scale, from global climate change scenarios, based on the assumption that there is a systematic link between the large-scale and local climate. Two types of downscaling approaches are known: a) dynamical downscaling is based on regional climate models nested in a global climate model; and b) statistical downscaling is based on developing statistical relationships between large-scale atmospheric variables (predictors), available from global climate models, and observed local-scale variables of interest (predictands).Various types of empirical-statistical downscaling approaches can be placed approximately in linear and nonlinear groupings. The empirical-statistical downscaling techniques focus more on details related to the nonlinear models—their validation, strengths, and weaknesses—in comparison to linear models or the mixed models combining the linear and nonlinear approaches. Stochastic models can be applied to daily and sub-daily precipitation in Romania, with a comparison to dynamical downscaling. Conditional stochastic models are generally specific for daily or sub-daily precipitation as predictand.A complex validation of the nonlinear statistical downscaling models, selection of the large-scale predictors, model ability to reproduce historical trends, extreme events, and the uncertainty related to future downscaled changes are important issues. A better estimation of the uncertainty related to downscaled climate change projections can be achieved by using ensembles of more global climate models as drivers, including their ability to simulate the input in downscaling models. Comparison between future statistical downscaled climate signals and those derived from dynamical downscaling driven by the same global model, including a complex validation of the regional climate models, gives a measure of the reliability of downscaled regional climate changes.


2012 ◽  
Vol 25 (1) ◽  
pp. 262-281 ◽  
Author(s):  
Ethan D. Gutmann ◽  
Roy M. Rasmussen ◽  
Changhai Liu ◽  
Kyoko Ikeda ◽  
David J. Gochis ◽  
...  

Abstract Statistical downscaling is widely used to improve spatial and/or temporal distributions of meteorological variables from regional and global climate models. This downscaling is important because climate models are spatially coarse (50–200 km) and often misrepresent extremes in important meteorological variables, such as temperature and precipitation. However, these downscaling methods rely on current estimates of the spatial distributions of these variables and largely assume that the small-scale spatial distribution will not change significantly in a modified climate. In this study the authors compare data typically used to derive spatial distributions of precipitation [Parameter-Elevation Regressions on Independent Slopes Model (PRISM)] to a high-resolution (2 km) weather model [Weather Research and Forecasting model (WRF)] under the current climate in the mountains of Colorado. It is shown that there are regions of significant difference in November–May precipitation totals (>300 mm) between the two, and possible causes for these differences are discussed. A simple statistical downscaling is then presented that is based on the 2-km WRF data applied to a series of regional climate models [North American Regional Climate Change Assessment Program (NARCCAP)], and the downscaled precipitation data are validated with observations at 65 snow telemetry (SNOTEL) sites throughout Colorado for the winter seasons from 1988 to 2000. The authors also compare statistically downscaled precipitation from a 36-km model under an imposed warming scenario with dynamically downscaled data from a 2-km model using the same forcing data. Although the statistical downscaling improved the domain-average precipitation relative to the original 36-km model, the changes in the spatial pattern of precipitation did not match the changes in the dynamically downscaled 2-km model. This study illustrates some of the uncertainties in applying statistical downscaling to future climate.


2019 ◽  
Vol 32 (10) ◽  
pp. 3051-3067 ◽  
Author(s):  
Aiko Voigt ◽  
Nicole Albern ◽  
Georgios Papavasileiou

Abstract Previous work showed that the poleward expansion of the annual-mean zonal-mean atmospheric circulation in response to global warming is strongly modulated by changes in clouds and their radiative heating of the surface and atmosphere. Here, a hierarchy and an ensemble of global climate models are used to study the circulation impact of changes in atmospheric cloud-radiative heating in the absence of changes in sea surface temperature (SST), which is referred to as the atmospheric pathway of the cloud-radiative impact. For the MPI-ESM model, the atmospheric pathway is responsible for about half of the total cloud-radiative impact, and in fact half of the total circulation response. Changes in atmospheric cloud-radiative heating are substantial in both the lower and upper troposphere. However, because SST is prescribed the atmospheric pathway is dominated by changes in upper-tropospheric cloud-radiative heating, which in large part results from the upward shift of high-level clouds. The poleward circulation expansion via the atmospheric pathway and changes in upper-tropospheric cloud-radiative heating are qualitatively robust across three global models, yet their magnitudes vary by a factor of 3. A substantial part of these magnitude differences are related to the upper-tropospheric radiative heating by high-level clouds in the present-day climate. A comparison with observations highlights the model deficits in representing the radiative heating by high-level clouds and indicates that reducing these deficits can contribute to improved predictions of regional climate change.


2012 ◽  
Vol 19 (6) ◽  
pp. 623-633 ◽  
Author(s):  
F. Wetterhall ◽  
F. Pappenberger ◽  
Y. He ◽  
J. Freer ◽  
H. L. Cloke

Abstract. Dynamical downscaling of Global Climate Models (GCMs) through regional climate models (RCMs) potentially improves the usability of the output for hydrological impact studies. However, a further downscaling or interpolation of precipitation from RCMs is often needed to match the precipitation characteristics at the local scale. This study analysed three Model Output Statistics (MOS) techniques to adjust RCM precipitation; (1) a simple direct method (DM), (2) quantile-quantile mapping (QM) and (3) a distribution-based scaling (DBS) approach. The modelled precipitation was daily means from 16 RCMs driven by ERA40 reanalysis data over the 1961–2000 provided by the ENSEMBLES (ENSEMBLE-based Predictions of Climate Changes and their Impacts) project over a small catchment located in the Midlands, UK. All methods were conditioned on the entire time series, separate months and using an objective classification of Lamb's weather types. The performance of the MOS techniques were assessed regarding temporal and spatial characteristics of the precipitation fields, as well as modelled runoff using the HBV rainfall-runoff model. The results indicate that the DBS conditioned on classification patterns performed better than the other methods, however an ensemble approach in terms of both climate models and downscaling methods is recommended to account for uncertainties in the MOS methods.


2012 ◽  
Vol 12 (1) ◽  
pp. 1191-1213 ◽  
Author(s):  
P. Liu ◽  
A. P. Tsimpidi ◽  
Y. Hu ◽  
B. Stone ◽  
A. G. Russell ◽  
...  

Abstract. Dynamical downscaling has been extensively used to study regional climate forced by large-scale global climate models. During the downscaling process, however, the simulation of regional climate models (RCMs) tends to drift away from the driving fields. Developing a solution that addresses this issue, by retaining the large scale features (from the large-scale fields) and the small-scale features (from the RCMs) has led to the development of "nudging" techniques. Here, we examine the performance of two nudging techniques, grid and spectral nudging, in the downscaling of NCEP/NCAR data using Weather Research and Forecasting (WRF) Model. The simulations are compared against the results with North America Regional Reanalysis (NARR) data set at different scales of interest. We show that with the appropriate choice of wave numbers, spectral nudging outperforms grid nudging in the capacity of balancing the performance of simulation at the large and small scales.


Sign in / Sign up

Export Citation Format

Share Document