Ground thermal contrasts and variability at an alpine pyramidal peak in central Austria (Innerer Knorrkogel, Venediger Mountains)

Author(s):  
Andreas Kellerer-Pirklbauer ◽  
Gerhard Karl Lieb

<p>Ground temperatures in alpine environments are severely influenced by slope orientation (aspect), slope inclination, local topoclimatic conditions, and thermal properties of the rock material. Small differences in one of these factors may substantially impact the ground thermal regime, weathering by freeze-thaw action or the occurrence of permafrost. To improve the understanding of differences, variations, and ranges of ground temperatures at single mountain summits, we studied the ground thermal conditions at a triangle-shaped (plan view), moderately steep pyramidal peak over a two-year period (2018-2020).</p><p>We installed 18 monitoring sites with 23 sensors near the summit of Innerer Knorrkogel (2882m asl), in summer 2018 with one- and multi-channel datalogger (Geoprecision). All three mountain ridges (east-, northwest-, and southwest-facing) and flanks (northeast-, west-, and south-facing) were instrumented with one-channel dataloggers at two different elevations (2840 and 2860m asl) at each ridge/flank to monitor ground surface temperatures. Three bedrock temperature monitoring sites with shallow boreholes (40cm) equipped with three sensors per site at each of the three mountain flanks (2870m asl) were established. Additionally, two ground surface temperature monitoring sites were installed at the summit.</p><p>Results show remarkable differences in mean annual ground temperatures (MAGT) between the 23 different sensors and the two years despite the small spatial extent (0.023 km²) and elevation differences (46m). Intersite variability at the entire mountain pyramid was 3.74°C in 2018/19 (mean MAGT: -0.40°C; minimum: -1.78°C; maximum: 1.96°C;) and 3.27°C in 2019/20 (mean MAGT: 0.08°C; minimum: -1.54°C; maximum: 1,73°C;). Minimum was in both years at the northeast-facing flank, maximum at the south-facing flank. In all but three sites, the second monitoring year was warmer than the first one (mean +0.48°C) related to atmospheric differences and site-specific snow conditions. The comparison of the MAGT-values of the two years (MAGT-2018/19 minus MAGT-2019/20) revealed large thermal inhomogeneities in the mountain summit ranging from +0.65° (2018/19 warmer than 2019/20) to -1.76°C (2018/19 colder than 2019/20) at identical sensors. Temperature ranges at the three different aspects but at equal elevations were 1.7-2.2°C at ridges and 1.8-3.7°C at flanks for single years. The higher temperature range for flank-sites is related to seasonal snow cover effects combined with higher radiation at sun-exposed sites. Although the ground temperature was substantially higher in the second year, the snow cover difference between the two years was variable. Some sites experienced longer snow cover periods in the second year 2019/20 (up to +85 days) whereas at other sites the opposite was observed (up to -85 days). Other frost weathering-related indicators (diurnal freeze-thaw cycles, frost-cracking window) show also large intersite and interannual differences.</p><p>Our study shows that the thermal regime at a triangle-shaped moderately steep pyramidal peak is very heterogeneous between different aspects and landforms (ridge/flank/summit) and between two monitoring years confirming earlier monitoring and modelling results. Due to high intersite and interannual variabilities, temperature-related processes such as frost-weathering can vary largely between neighbouring sites. Our study highlights the need for systematic and long-term ground temperature monitoring in alpine terrain to improve the understanding of small- to medium-scale temperature variabilities.</p>

Finisterra ◽  
2012 ◽  
Vol 44 (87) ◽  
Author(s):  
Javier Santos-González ◽  
Rosa González-Gutiérrez ◽  
Amélia Gómes-Villar ◽  
José Redondo-Vega

Ground temperature data obtained from 2002 to 2007 in sites near relict rock glaciers in the cantabrian mountains, at altitudes between 1500 and 2300 meters is analysed. Snow cover lasted between 3 and 9 months and had a strong influence on the thermal regime. When snow was present, the soil was normally frozen in the first 5 to 10 cm, but daily freeze-thaw cycles were rare. In well developed soils located at sunny faces frost penetration rarely reached more than 10 cm. on the contrary in shady and windy faces with scarce snow cover, frost penetration reached, at least, 40 cm. In persistent snow patches the temperature was stable at 0 ºc, even in relict rock glaciers, where subnival winter air fluxes appear to have been very rare.


2016 ◽  
Author(s):  
Gonçalo Vieira ◽  
Carla Mora ◽  
Ali Faleh

Abstract. Relict and present-day periglacial activity have been reported in the literature for the upper reaches of the High Atlas mountains, the highest range in North Africa (Djebel Toubkal – 4,167 m a.s.l.). Lobate features in the Irhzer Ikbi South at 3,800 m a.s.l. have been previously interpreted as an active rock glacier, but no measurements of ground or air temperatures are known to exist for the area. In order to assess on the possible presence of permafrost, analyse data from June 2015 to June 2016 from two air temperature sites at 2,370 and 3,200 m a.s.l., and from four ground surface temperature (GST) sites at 3,200, 3,815, 3,980 and 4,160 m a.s.l. allowing to characterize conditions along an altitudinal gradient along the Oued Ihghyghaye valley to the summit of the Djebel Toubkal. GST were collected at 1-hour intervals and the presence of snow cover at the monitoring sites was validated using Landsat-8 and Sentinel-2 imagery. Two field visits allowed for logger installation and collection and for assessing the geomorphological features in the area. The results show that snow plays a major role on the thermal regime of the shallow ground, inducing important spatial variability. The lowest site at 3,210 m showed a regime characterized by frequent freeze-thaw cycles during the cold season but with a small number of days of snow. When snow sets, the ground remains isothermal at 0 °C and the thermal regime indicates the absence of permafrost. The highest sites at 3,980 and 4,160 m a.s.l. showed very frequent freeze-thaw cycles and a small influence of the snow cover on GST, reflecting the lack of snow accumulation due to the their wind-exposed settings in a ridge and in the summit plateau. The site located at 3,815 m in the Irhzer Ikbi South valley showed a stable thermal regime from December to March with GST varying from −4.5 to −6 °C, under a continuous snow cover. The site's location in a concave setting favours snow accumulation and lower incoming solar radiation due to the effect of a southwards ridge, favouring the maintenance of a thick snow pack. The stable and low GST are interpreted as a strong indicator of the probable presence of permafrost at this site, an interpretation which is supported by the presence of lobate and arcuate forms in the talus deposits. These results are still a first approach and observations through geophysics and boreholes are foreseen. This is the first time that probable permafrost is reported from temperature observations in the mountains of North Africa.


2017 ◽  
Vol 11 (4) ◽  
pp. 1691-1705 ◽  
Author(s):  
Gonçalo Vieira ◽  
Carla Mora ◽  
Ali Faleh

Abstract. Relict and present-day periglacial features have been reported in the literature for the upper reaches of the High Atlas mountains, which is the highest range in North Africa (Djebel Toubkal – 4167 m a.s.l.). A lobate feature in the Irhzer Ikhibi south at 3800 m a.s.l. has been previously interpreted as an active rock glacier, but no measurements of ground or air temperatures are known to exist for the area. In order to assess the possible presence of permafrost, we analyse data from June 2015 to June 2016 from two air temperature measurement sites at 2370 and 3210 m a.s.l. and from four ground surface temperature (GST) sites at 3220, 3815, 3980 and 4160 m a.s.l. to characterize conditions along an altitudinal gradient along the Oued Ihghyghaye valley to the summit of the Djebel Toubkal. GSTs were collected at 1 h intervals, and the presence of snow cover at the monitoring sites was validated using Landsat 8 and Sentinel-2 imagery. Two field visits allowed for logger installation and collection and for assessing the geomorphological features in the area. The results show that snow plays a major role on the thermal regime of the shallow ground, inducing important spatial variability. The lowest site at 3220 m had a thermal regime characterized by frequent freeze–thaw cycles during the cold season but with few days of snow. When snow settled, the ground surface remained isothermal at 0 °C , indicating the absence of permafrost. The highest sites at 3980 and 4160 m a.s.l. showed very frequent freeze–thaw cycles and a small influence of the snow cover on GST, reflecting the lack of snow accumulation due to the wind-exposed settings on a ridge and on the summit plateau. The site located at 3815 m in the Irhzer Ikhibi south valley had a cold, stable thermal regime with GST varying from −4.5 to −6 °C from December to March, under a continuous snow cover. The site's location in a concave setting favours wind-driven snow accumulation and lower incoming solar radiation due to the shading effect of a ridge, inducing the conservation of a thick snow pack. The stable and low GSTs are interpreted as a strong indicator of the probable presence of permafrost at this site, which is an interpretation supported by the presence of lobate and arcuate features in the talus deposits. We present first results and further observations using geophysics, and borehole measurements are foreseen. This is the first time that probable permafrost has been reported from temperature observations in the mountains of North Africa.


2016 ◽  
Vol 29 (2) ◽  
pp. 173-182 ◽  
Author(s):  
Kelly R. Wilhelm ◽  
James G. Bockheim

AbstractVariations in atmospheric conditions can be important factors influencing temperature dynamics within the active layer of a soil. Solar radiation and air temperature can directly alter ground surface temperatures, while variations in wind and precipitation can control how quickly heat is carried through soil pores. The presence of seasonal snow cover can also create a thermal barrier between the atmosphere and ground surface. This study examines the relation between atmospheric conditions and ground temperature variations on a deglaciated island along the Western Antarctic Peninsula. Ground temperatures were most significantly influenced by incoming solar radiation, followed by air temperature variations. When winter months were included in the comparison, the influence of air temperature increased while solar radiation became less influential, indicating that snow cover reflected solar radiation inputs, but was not thick enough to insulate the ground. When ground temperatures were compared to atmospheric conditions of preceding weeks, seasonal temperature peaks 1.6 m below ground were best related to seasonal air temperature peaks from the previous two weeks. The same ground temperature peaks were best related to seasonal solar radiation peaks of seven weeks prior. This difference was a result of temperature lags within the atmosphere.


2016 ◽  
Vol 10 (3) ◽  
pp. 1201-1215 ◽  
Author(s):  
Kjersti Gisnås ◽  
Sebastian Westermann ◽  
Thomas Vikhamar Schuler ◽  
Kjetil Melvold ◽  
Bernd Etzelmüller

Abstract. The strong winds prevalent in high altitude and arctic environments heavily redistribute the snow cover, causing a small-scale pattern of highly variable snow depths. This has profound implications for the ground thermal regime, resulting in highly variable near-surface ground temperatures on the metre scale. Due to asymmetric snow distributions combined with the nonlinear insulating effect of snow, the spatial average ground temperature in a 1 km2 area cannot be determined based on the average snow cover for that area. Land surface or permafrost models employing a coarsely classified average snow depth will therefore not yield a realistic representation of ground temperatures. In this study we employ statistically derived snow distributions within 1 km2 grid cells as input to a regional permafrost model in order to represent sub-grid variability of ground temperatures. This improves the representation of both the average and the total range of ground temperatures. The model reproduces observed sub-grid ground temperature variations of up to 6 °C, and 98 % of borehole observations match the modelled temperature range. The mean modelled temperature of the grid cell reproduces the observations with an accuracy of 1.5 °C or better. The observed sub-grid variations in ground surface temperatures from two field sites are very well reproduced, with estimated fractions of sub-zero mean annual ground surface temperatures within ±10 %. We also find that snow distributions within areas of 1 km2 in Norwegian mountain environments are closer to a gamma than to a lognormal theoretical distribution. The modelled permafrost distribution seems to be more sensitive to the choice of distribution function than to the fine-tuning of the coefficient of variation. When incorporating the small-scale variation of snow, the modelled total permafrost area of mainland Norway is nearly twice as large compared to the area obtained with grid-cell average snow depths without a sub-grid approach.


1975 ◽  
Vol 12 (8) ◽  
pp. 1421-1438 ◽  
Author(s):  
M. W. Smith

Variations in ground thermal regime were studied over a small area in the east-central part of the Mackenzie Delta, Northwest Territories, about 50 km northwest of Inuvik. Vegetation shows a successional sequence related to river migration and there is a complex interaction between vegetation, topography, and microclimate.Measurements from five sites show that significant differences in thermal regime exist beneath various types of vegetation. There is a general decrease in mean annual ground temperatures with increasing vegetation. The mean annual air temperature in this area is −9 °to −10 °C, but microclimatic factors lead to mean surface temperatures of between 0 °C and −4.2 °C.In summer, variations in net radiation account for the differences in ground thermal regime at the three sites on the slip-off slope. At the other two sites a surface layer of moss and peat leads to small values in ground heat flux and is instrumental in maintaining lower temperatures there. Removal of 10 cm of organic material at one site led to an increase of 3 °C in the mean daily 10 cm temperature.In winter, on the slip-off slope, variations in snow accumulation lead to ground temperature variations greater than those due to vegetation per se. Spatial variation of about 20 °C in ground surface temperature was measured in March 1970; during July and August 1970 the maximum spatial variation observed was only 10 °C. Differences of up to 6 °C in 1 m temperatures were measured over a distance of only 12 m. Snow cover is a permafrost-controlling factor in this area; where accumulations are greatest a talik has formed due to the insulating effect of deep snow.


1964 ◽  
Vol 1 (3) ◽  
pp. 147-154 ◽  
Author(s):  
W G Brown ◽  
G H Johnston ◽  
R. J. E Brown

Making use of limited ground temperature measurements in the neighbourhood of a small shallow lake near Inuvik, N.W.T., it was possible with the help of an electronic computer to estimate the entire thermal regime under and about the lake. The results indicated a completely unfrozen zone of roughly hour-glass shape directly under the lake. Field borings under the lake and adjacent to it supported this theoretical finding.


2013 ◽  
Vol 6 (4) ◽  
pp. 1319-1336 ◽  
Author(s):  
S. Gubler ◽  
S. Endrizzi ◽  
S. Gruber ◽  
R. S. Purves

Abstract. Model evaluation is often performed at few locations due to the lack of spatially distributed data. Since the quantification of model sensitivities and uncertainties can be performed independently from ground truth measurements, these analyses are suitable to test the influence of environmental variability on model evaluation. In this study, the sensitivities and uncertainties of a physically based mountain permafrost model are quantified within an artificial topography. The setting consists of different elevations and exposures combined with six ground types characterized by porosity and hydraulic properties. The analyses are performed for a combination of all factors, that allows for quantification of the variability of model sensitivities and uncertainties within a whole modeling domain. We found that model sensitivities and uncertainties vary strongly depending on different input factors such as topography or different soil types. The analysis shows that model evaluation performed at single locations may not be representative for the whole modeling domain. For example, the sensitivity of modeled mean annual ground temperature to ground albedo ranges between 0.5 and 4 °C depending on elevation, aspect and the ground type. South-exposed inclined locations are more sensitive to changes in ground albedo than north-exposed slopes since they receive more solar radiation. The sensitivity to ground albedo increases with decreasing elevation due to shorter duration of the snow cover. The sensitivity in the hydraulic properties changes considerably for different ground types: rock or clay, for instance, are not sensitive to uncertainties in the hydraulic properties, while for gravel or peat, accurate estimates of the hydraulic properties significantly improve modeled ground temperatures. The discretization of ground, snow and time have an impact on modeled mean annual ground temperature (MAGT) that cannot be neglected (more than 1 °C for several discretization parameters). We show that the temporal resolution should be at least 1 h to ensure errors less than 0.2 °C in modeled MAGT, and the uppermost ground layer should at most be 20 mm thick. Within the topographic setting, the total parametric output uncertainties expressed as the length of the 95% uncertainty interval of the Monte Carlo simulations range from 0.5 to 1.5 °C for clay and silt, and ranges from 0.5 to around 2.4 °C for peat, sand, gravel and rock. These uncertainties are comparable to the variability of ground surface temperatures measured within 10 m × 10 m grids in Switzerland. The increased uncertainties for sand, peat and gravel are largely due to their sensitivity to the hydraulic conductivity.


2021 ◽  
Author(s):  
Filip Hrbáček ◽  
Zbyněk Engel ◽  
Michaela Kňažková ◽  
Jana Smolíková

Abstract. This study aims to assess the role of ephemeral snow cover on ground thermal regime and active layer thickness in two ground temperature measurement profiles on the Circumpolar Active Layer Monitoring Network – South (CALM-S) JGM site on James Ross Island, eastern Antarctic Peninsula during the high austral summer 2018. The snowstorm of 13–14 January created a snowpack of recorded depth of up to 38 cm. The snowpack remained on the study site for 12 days in total and covered 46 % of its area six days after the snowfall. It directly affected ground thermal regime in a study profile AWS-JGM while the AWS-CALM profile was snow-free. The thermal insulation effect of snow cover led to a decrease of mean summer ground temperatures on AWS-JGM by ca 0.5–0.7 °C. Summer thawing degree days at a depth of 5 cm decreased by ca 10 % and active layer was ca 5–10 cm thinner when compared to previous snow-free summer seasons. Surveying by ground penetrating radar revealed a general active layer thinning of up to 20 % in those parts of the CALM-S which were covered by snow of > 20 cm depth for at least six days.


2016 ◽  
Vol 71 (2) ◽  
pp. 121-131 ◽  
Author(s):  
Rachel Luethi ◽  
Marcia Phillips

Abstract. Long-term borehole temperature monitoring in mountain permafrost environments is challenging under the hostile conditions reigning in alpine environments. On the basis of data measured in the SLF borehole network we show three situations where ground temperature data should be interpreted with caution. (i) Thermistors have the tendency to drift, particularly if exposed to moisture or mechanical strain. This induces apparent warming or cooling, which can be difficult to differentiate from real ground temperature changes. Recalibration of thermistor chains is impossible if they cannot be extracted as a result of borehole deformation in creeping permafrost terrain. A solution using zero-curtain-based detection of drift and correction of data is presented. This method is however limited to the active layer, due to the lack of a reference temperature at greater depth. (ii) In contrast to drift-induced apparent warming, actual warming may be induced by natural processes or by the effects of construction activity. (iii) Control data from neighbouring boreholes are sometimes used to fill data gaps and discern drift – however these data may only underline the strong spatial variability of ground temperatures rather than provide measurement redundancy. A selection of recently observed problems regarding borehole monitoring in a hostile measurement environment are discussed, and advantages and possible drawbacks of various solutions including measurement redundancy or alternate instrumentation are presented.


Sign in / Sign up

Export Citation Format

Share Document