Photosynthetic carbon assimilation and electron transport rate in two symbiont-bearing planktonic foraminifera

Author(s):  
Haruka Takagi ◽  
Tetsuichi Fujiki ◽  
Katsunori Kimoto

<p>Photosymbiosis is one of the important features in planktonic foraminifera. The number of symbiont cells within one host is reported to be well over a few thousand, which means that photosynthesis by photosymbiosis might be a “hot spot” of primary production, especially in oligotrophic oceans. Information of photosynthetic activity of symbionts is also essential when interpreting the geochemical proxies recorded in foraminiferal tests because the microenvironmental condition in the vicinity of foraminifera is greatly affected by rapid biological activities such as photosynthesis and respiration. Recently, active chlorophyll fluorometry is increasingly being used as a useful and instant tool to estimate photosynthesis. However, the carbon assimilation rate is the only direct measure of photosynthetic carbon flow. Therefore, confirming the relationship between the active fluorometry-based photosynthetic rate (electron transport rate, ETR) and carbon assimilation rate (CAR) is required before utilizing ETR to understand the dynamics of carbon in the foraminifera-symbiont system.</p><p>Here, we compared CAR and ETR for two species, <em>Trilobatus sacculifer</em> (dinoflagellate-bearing) and <em>Globigerinella siphonifera</em> Type II (pelagophyte-bearing). CAR was estimated using <sup>14</sup>C‐tracer experiment and ETR was estimated using active fluorometric measurement by fast repetition rate fluorometry.</p><p>The results showed that the CAR and ETR were correlated positively (<em>p</em> << 0.01) for both species. However, the regression slopes of the two species were largely different. The slope, representing the apparent electron requirement for carbon assimilation (e<sup>−</sup>/C), was estimated to 28.5 for<em> T. sacculifer</em> and 101.1 for <em>G. siphonifera</em>. These values were strikingly high. Theoretically, under optimal growth conditions, phototrophs’ e<sup>−</sup>/C should be 4 based on the minimum number of electrons derived from 2 water molecules to generate 1 oxygen molecule. So, we hypothesized that the observed high e<sup>−</sup>/C in the foraminifera-algal consortia is partly attributable to the utilization of unlabeled respiratory carbon (resulting in underestimation of CAR). Considering the theoretical and empirically realistic e<sup>−</sup>/C, we estimated the proportion of the carbon source for photosynthesis. The results showed that a considerable amount of carbon should be derived from the host’s respired CO<sub>2</sub>. The higher contribution of the respired CO<sub>2</sub> was suggested in <em>G. siphonifera</em> than in <em>T. sacculifer</em>.</p><p>From the viewpoint of utilizing test geochemistry such as δ<sup>13</sup>C as paleoceanographic proxies, one should beware that the potential magnitude of the photosynthetic effect can differ between species. This study suggests that in <em>G. siphonifera</em>, photosynthetic carbon incorporation from seawater is smaller, and utilization of the host-derived carbon by symbionts is more efficient, indicating that <em>G. siphonifera</em> would be less susceptible to the alteration of geochemical composition by photosynthesis and respiration. This attempt to couple the ETR and CAR could comprehensively disclose an interesting perspective of these intimate interactions in the photosymbiotic system.</p>

2019 ◽  
Vol 37 ◽  
Author(s):  
M.R. DURIGON ◽  
A.S. CAMERA ◽  
J. CECHIN ◽  
L. VARGAS ◽  
G. CHAVARRIA

ABSTRACT: Canola is an important rotation crop for the winter season and the use of atrazine-resistant hybrids can lead to an increase in yield. This work was aimed at evaluating the effect of atrazine on photochemical and biochemical processes of photosynthesis in triazine-resistant canola. The experiment was conducted in a greenhouse, with triazine-resistant hybrid Hyola® 555TT, in a randomized block design with three replications. The treatments consisted of application or no application of atrazine on canola plants. The plants were assessed at one, three, five, and eight days after application (DAA) for chlorophyll indexes, modulated chlorophyll a fluorescence and gas exchange. Chlorophyll indexes were higher in canola plants treated with atrazine. Application of atrazine caused an increase in fluorescence at steady state and a reduction in quantum efficiency of photosystem II and electron transport rate, at 1 DAA, and a reduction in photochemical quenching, at 1 and 3 DAA. Lower stomatal conductance, at 1 DAA, and higher net carbon assimilation rate, at 8 DAA, were found in plants treated with atrazine. The application of atrazine temporarily reduces electron transport between photosystems and increases chlorophyll indexes in resistant canola plants, raising the net carbon assimilation rate at eight days after application.


2000 ◽  
Vol 27 (5) ◽  
pp. 451 ◽  
Author(s):  
Mark J. Hovenden ◽  
Tim Brodribb

Gas exchange measurements were made on saplings of Southern Beech, Nothofagus cunninghamii (Hook.) Oerst. collected from three altitudes (350, 780 and 1100 m above sea level) and grown in a common glasshouse trial. Plants were grown from cuttings taken 2 years earlier from a number of plants at each altitude in Mt Field National Park, Tasmania. Stomatal density increased with increasing altitude of origin, and stomatal con-ductance and carbon assimilation rate were linearly related across all samples. The altitude of origin influenced thestomatal conductance and therefore carbon assimilation rate, with plants from 780 m having a greater photosynthetic rate than those from 350 m. The intercellular concentration of CO2 as a ratio of external CO2 concentration (ci/ca) was similar in all plants despite the large variation in maximum stomatal conductance. Carboxylation efficiency was greater in plants from 780 m than in plants from 350 m. Altitude of origin has a strong influence on the photo-synthetic performance of N. cunninghamii plants even when grown under controlled conditions, and this influence is expressed in both leaf biochemistry (carboxylation efficiency) and leaf morphology (stomatal density).


2021 ◽  
Author(s):  
Susanne von Caemmerer

AbstractC4 plants play a key role in world agriculture. For example, C4 crops such as maize and sorghum are major contributors to both first and third world food production and the C4 grasses sugarcane; miscanthus and switchgrass are major plant sources of bioenergy. In the challenge to manipulate and enhance C4 photosynthesis, steady state models of leaf photosynthesis provide and important tool for gas exchange analysis and thought experiments that can explore photosynthetic pathway changes. Here the C4 photosynthetic model by von Caemmerer and Furbank (1999) has been updated with new kinetic parameterisation and temperature dependencies added. The parameterisation was derived from experiments on the C4 monocot, Setaria viridis, which for the first time provides a cohesive parametrisation. Mesophyll conductance and its temperature dependence have also been included, as this is an important step in the quantitative correlation between the initial slope of the CO2 response curve of CO2 assimilation and in vitro PEP carboxylase activity. Furthermore, the equations for chloroplast electron transport have been updated to include cyclic electron transport flow and equations have been added to calculate electron transport rate from measured CO2 assimilation rates.HighlightThe C4 photosynthesis model by von Caemmerer and Furbank (1999) has been updated. It now includes temperature dependencies and equations to calculate electron transport rate from measured CO2 assimilation rates.


Author(s):  
Roque de Carvalho Dias ◽  
Leandro Bianchi ◽  
Vitor Muller Anunciato ◽  
Leandro Tropaldi ◽  
Paulo Vinicius da Silva ◽  
...  

Abstract Mefenpyr-diethyl is a foliar-acting safener of the pyrazoline chemical group, and after its absorption, the metabolization and detoxification of herbicides occur in treated plants. Studies have demonstrated the protective effect of this safener for the herbicide fenoxaprop-P-ethyl in grass. Thus, this work aimed to evaluate whether a tank mixture of mefenpyr-diethyl has a protective response to haloxyfop-methyl in non-perennial bahiagrass. The experiment had a completely randomized design and was carried out in a greenhouse, using five replications with a 10x2 factorial scheme and ten doses of haloxyfop-methyl (0.00, 0.24, 0.49, 0.97, 1.95, 3.90, 7.79, 15.59, 31.28, and 62.35 g a.i. ha-1) in the presence or absence of a tank mixture of mefenpyr-diethyl (50 g a.i. ha-1). Phytotoxicity and electron transport rate (ETR) were evaluated at 7, 14, 21, and 28 days after application (DAA), in addition to plant height and dry biomass at 28 DAA. In general, phytotoxicity increased due to the higher levels of the herbicide haloxyfop-methyl. The application of mefenpyr-diethyl, in turn, provided lower levels of phytotoxicity, as well as lower reductions in ETR, height, and dry biomass when compared to untreated plants. These results show the safener action of a tank mixture of mefenpyr-diethyl on low doses of haloxyfop-methyl in non-perennial bahiagrass.


2004 ◽  
Vol 31 (5) ◽  
pp. 471 ◽  
Author(s):  
Stephen O. Kern ◽  
Mark J. Hovenden ◽  
Gregory J. Jordan

The impact of differences in leaf shape, size and arrangement on the efficiency of light interception, and in particular the avoidance of photoinhibition, are poorly understood. We therefore estimated light exposure of branches in the cool temperate rainforest tree, Nothofagus cunninghamii (Hook.) Oerst., in which leaf shape, size and arrangement vary systematically with altitude and geographic origin. Measurements of incident photosynthetic photon flux density (PPFD) were made in the laboratory at solar angles corresponding to noon at summer solstice, winter solstice and equinox on branches collected from a common garden experiment. Tasmanian plants showed more self-shading than Victorian plants in summer and equinox. This was related to branch angle, leaf arrangement and leaf shape. Using a modelled light response-curve, we estimated the carbon assimilation rate and the flux density of excess photons at different incident PPFD. Victorian plants had higher predicted assimilation rates than Tasmanian plants in summer and equinox, but were exposed to substantially greater levels of excess photons. Because of the shape of the light-response curve, self-shading appears to reduce the plant's exposure to excess photons, thus providing photoprotection, without substantially reducing the carbon assimilation rate. This is dependent on both regional origin and season.


Plants ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 960
Author(s):  
Kuan-Hung Lin ◽  
Feng-Chi Shih ◽  
Meng-Yuan Huang ◽  
Jen-Hsien Weng

The objective of this work was to study physiological characteristics and photosynthetic apparatus in differentially pigmented leaves of three Chinese kale cultivars. Chlorophyll (Chl) fluorescence and photochemical reflectance index (PRI) measurements in green, yellow-green, and dark-green cultivars in response to varying light intensities. As light intensity increased from 200 to 2000 photosynthetic photon flux density (PPFD), fraction of light absorbed in photosystem (PS) II and PRI values in all plants were strongly lowered, but fraction of light absorbed in PSII dissipated via thermal energy dissipation and non-photochemical quenching (NPQ) values in all plants wereremarkably elevated.When plants were exposed to 200 PPFD, the values of fraction of light absorbed in PSII, utilized in photosynthetic electron transport(p), andfraction of light absorbed excitation energy in PSII dissipated via thermal energy dissipation (D), remained stable regardless of the changes in levels of Chla + b. Under 800 and 1200 PPFD, the values of p and electron transport rate (ETR) decreased, but D and NPQ increased as Chla + bcontent decreased, suggesting that decrease inChla + bcontent led to lower PSII efficiency and it became necessary to increase dissipate excess energy. On the contrary, in 2000 PPFD, leaves with lower Chla + bcontent had relatively higher p and electron transport rate (ETR) values and lower D level, as well as tended to increase more in NPQ but decrease more in PRI values. The consistent relations between PRI and NPQ suggest that NPQ is mainly consisted ofthe xanthophyll cycle-dependentenergy quenching.Yellow-green cultivar showed lower Chla + bcontent but high carotenoids/Chla + b ratio and had high light protection ability under high PPFD. The precise management of photosynthetic parameters in response to light intensity can maximize the growth and development of Chinese kale plants.


Sign in / Sign up

Export Citation Format

Share Document