Influence of Ephemeral Gully Location Prediction on Soil Erosion Estimation

Author(s):  
Chunmei Wang ◽  
Richard Cruse ◽  
Gelder Brian ◽  
Herzmann Daryl ◽  
Thompson Kelly ◽  
...  

<p>Predicting ephemeral gully (EG) location is essential for erosion modeling because it helps confine portions of the hillslope segment above locations that gully and channel soil loss processes dominate. In the Water Erosion Prediction Project (WEPP), the prediction of EG occurrence location influences the model results by shorting or expanding the flow path, which the hillslope erosion modeling relies on. This research aimed to analyze the sensitivity of EG locations prediction accuracy on WEPP model output within the framework of the Daily Erosion Project (DEP) at the regional scale. DEP is a near real-time estimator of precipitation, soil detachment, hillslope soil loss, and water runoff using WEPP as the erosion model. The above estimations are conducted on randomly selected and spatially distributed flowpaths, and the means are reported at the HUC12 watershed level. The flowpaths are identified based on Digital Elevation Model (DEM) grid cell and D8 connectivity to adjacent cells. A flow path starts at a cell such that all adjacent cells are at a lower elevation, that is, no other adjacent cell directs flow into it and ends when sufficient flow concentration and soil conditions occur that channel erosion processes dominate soil loss where usually EGs occurrence. In this research, the DEP flowpaths, down to and including ephemeral gully heads, were surveyed in 8 HUC12 watersheds distributed in 8 different Iowa MLRAs using high-resolution imagery in-field measurement. A grid order model was used as a method for EG location prediction. The sensitivity of accuracy of EG location prediction on WEPP/DEP soil detachment, hillslope soil loss, and water runoff model output was explored at hillslope, watershed, and regional spatial scale with both extreme rainfall events and yearly average erosion modeling. This research will allow a more clear understanding of EG prediction influence on erosion modeling and help improve the accuracy of erosion modeling by using WEPP / DEP.</p>

2011 ◽  
Vol 91 (4) ◽  
pp. 627-635 ◽  
Author(s):  
Rachid Moussadek ◽  
Rachid Mrabet ◽  
Patrick Zante ◽  
Jean Marie Lamachère ◽  
Yannick Pépin ◽  
...  

Moussadek, R., Mrabet, R., Zante, P., Lamachère, J. M., Pépin, Y., Le Bissonnais, Y., Ye, L., Verdoodt, A. and Van Ranst, E. 2011. Impact of tillage and residue management on the soil properties and water erosion of a Mediterranean Vertisol. Can. J. Soil Sci. 91: 627–635. Soil erosion research on Mediterranean Vertisols under no tillage systems (NT) is still scarce. A rainfall simulator was used on Vertisols to compare water runoff and soil loss in a conventional tillage system (CT), NT system with crop residues removed (NT0), and NT with 50% of crop residues returned to the soil surface (NT50). Runoff and soil loss rates were more than 50% lower under NT50 compared with NT0 and CT. Wet aggregate stability (MWD), soil organic matter (SOM) and soil bulk density (Da) were significantly higher under NT than under CT. A multiple regression analysis showed that when the soil was dry, Da explained 84 and 96% of the variation in water runoff and soil loss, respectively. Under wet soil conditions, MWD explained 47 and 69% of variation in water runoff and soil loss, respectively. Consequently, although NT systems improved soil quality (MWD, SOM) compared with the CT system, returning 50% of crop residues at the soil surface was mandatory under NT to protect these Vertisols against water erosion.


2021 ◽  
Vol 11 (15) ◽  
pp. 6763
Author(s):  
Mongi Ben Zaied ◽  
Seifeddine Jomaa ◽  
Mohamed Ouessar

Soil erosion remains one of the principal environmental problems in arid regions. This study aims to assess and quantify the variability of soil erosion in the Koutine catchment using the RUSLE (Revised Universal Soil Loss Equation) model. The Koutine catchment is located in an arid area in southeastern Tunisia and is characterized by an annual mean precipitation of less than 200 mm. The model was used to examine the influence of topography, extreme rainstorm intensity and soil texture on soil loss. The data used for model validation were obtained from field measurements by monitoring deposited sediment in settlement basins of 25 cisterns (a traditional water harvesting and storage technique) over 4 years, from 2015 to 2018. Results showed that slope is the most controlling factor of soil loss. The average annual soil loss in monitoring sites varies between 0.01 and 12.5 t/ha/y. The storm events inducing the largest soil losses occurred in the upstream part of the Koutine catchment with a maximum value of 7.3 t/ha per event. Soil erosion is highly affected by initial and preceding soil conditions. The RUSLE model reasonably reproduced (R2 = 0.81) the spatiotemporal variability of measured soil losses in the study catchment during the observation period. This study revealed the importance of using the cisterns in the data-scarce dry areas as a substitute for the classic soil erosion monitoring fields. Besides, combining modeling of outputs and field measurements could improve our physical understanding of soil erosion processes and their controlling factors in an arid catchment. The study results are beneficial for decision-makers to evaluate the existing soil conservation and water management plans, which can be further adjusted using appropriate soil erosion mitigation options based on scientific evidence.


2019 ◽  
Vol 579 ◽  
pp. 124174
Author(s):  
Ximeng Xu ◽  
Fenli Zheng ◽  
Glenn V. Wilson ◽  
Xunchang J. Zhang ◽  
Chao Qin ◽  
...  

2014 ◽  
Vol 8 (1) ◽  
pp. 217-224
Author(s):  
Gheorghe Damian ◽  
Daniel Năsui ◽  
Floarea Damian ◽  
Dan Ciurte

Abstract The Sediment Assessment Tool for Effective Erosion Control (SATEEC) acts as an extension for ArcView GIS 3, with easy to use commands. The erosion assessment is divided into two modules that consist of Universal Soil Loss Equation (USLE) for sheet/rill erosion and the nLS/USPED modeling for gully head erosion. The SATEEC erosion modules can be successfully implemented for areas where sheet, rill and gully erosion occurs, such as the Prislop Catchment. The enhanced SATEEC system does not require experienced GIS users to operate the system therefore it is suitable for local authorities and/or students not so familiar with erosion modeling.


2014 ◽  
Vol 38 (2) ◽  
pp. 129-139 ◽  
Author(s):  
Pedro Luiz Terra Lima ◽  
Marx Leandro Naves Silva ◽  
Nilton Curi ◽  
John Quinton

Adequate soil management can create favorable conditions to reduce erosion and water runoff, consequently increase water soil recharge. Among management systems intercropping is highly used, especially for medium and small farmers. It is a system where two or more crops with different architectures and vegetative cycles are explored simultaneously at the same location. This research investigated the effects of maize intercropped with jack bean on soil losses due to water erosion, estimate C factor of Universal Soil Losses Equation (USLE) and how it can be affected by soil coverage. The results obtained also contribute to database generation, important to model and estimate soil erosion. Total soil loss by erosion caused by natural rain, at Lavras, Minas Gerais, Brazil, were: 4.20, 1.86, 1.38 and 1.14 Mg ha-1, respectively, for bare soil, maize, jack bean and the intercropping of both species, during evaluated period. Values of C factor of USLE were: 0.039, 0.054 and 0.077 Mg ha Mg-1 ha-1 for maize, jack bean and intercropping between both crops, respectively. Maize presented lower vegetation cover index, followed by jack beans and consortium of the studied species. Intercropping between species showed greater potential on soil erosion control, since its cultivation resulted in lower soil losses than single crops cultivation, and this aspect is really important for small and medium farmers in the studied region.


2011 ◽  
Vol 91 (2) ◽  
pp. 279-290 ◽  
Author(s):  
Zisheng Xing ◽  
Lien Chow ◽  
Herb W. Rees ◽  
Fanrui Meng ◽  
John Monteith ◽  
...  

Xing, Z., Chow, L., Rees, H. W., Meng, F., Monteith, J. and Stevens, L. 2011. A comparison of effects of one-pass and conventional potato hilling on water runoff and soil erosion under simulated rainfall. Can. J. Soil Sci. 91: 279–290. Hilling plays an important role in potato production, but is found to be inducing soil loss. An artificial rainfall simulation system was used to evaluate the differences between one-pass hilling (OPH, hilling performed when planting, or shortly after planting) and conventional hilling (CH, hilling performed approximately 35–45 d after planting) as well as their combination with a cover crop (ryegrass; _R) on runoff and soil loss. A three-replicate randomized block experimental design with constant rainfall intensity (120 mm h−1) was used in this study. No significant differences in runoff were found between different hilling methods. The soil losses, however, showed significant differences both among treatments, among canopy cover classes, and among their interaction terms (all P<0.001). The mean soil loss for CH was significantly higher than that for OPH, by 40%, and the mean soil loss for CH_R was higher than that for OPH_R by 57%. On average, the CH treatments (CH and CH_R) induced greater soil loss than the OPH treatments (OPH and OPH_R) by 47%. Further, the effects can vary with different canopy cover percentages. The OPH treatments (OPH and OPH_R) induced more soil loss than CH treatments (CH and CH_R), by 4.4 to 12.8%, in the <30% canopy cover group, while soil loss in the CH treatments was greater than that in OPH treatments for both the 30–70% and >70% canopy cover groups by 21–94%. Irrespective of treatment, soil loss before canopy forming was 2.4 to 8.9 times higher than the soil loss for the partial to full canopy period. With a cover crop, the CH and OPH treatments can reduce soil loss by 37–55%. One-pass hilling initiated runoff earlier than CH. The water runoff and soil loss with respect to the elapsed time since initialization of water runoff and soil loss could be modeled by a three-parameter Sigmoid function with r 2≥0.94. The information generated from this study could be used in landscape modeling to study the impacts of potato production on soil and stream water quality.


2021 ◽  
Vol 234 ◽  
pp. 00067
Author(s):  
Mohamed Manaouch ◽  
Anis Zouagui ◽  
Imad Fenjiro

Soil erosion is a major cause of land degradation. It can be estimated with several models, such as empirical, conceptual and physical based. One of the empirical models used worldwide nowadays for soil erosion assessment is the Universal Soil Loss Equation (USLE) and its updated form, the Revised Universal Soil Loss Equation (RUSLE). In Morocco, this model is being used to assess and quantify soil loss by water erosion. In spite of this, it was noted that limited studies employed correctly this important tool. The goal of this review paper was to identify potential usage of R/USLE models in Morocco. This was done by evaluating the conducted studies concerning these models and main gaps and challenges were determined accordingly. Improvement options and future requirements for using R/USLE models were recommended. In order to assess the statues of the R/USLE models applications, the 56 published documents related to R/USLE models conducted in Morocco during the first use till 2020 were collected and reviewed. These publications covered five main areas. The main benefits as well as gaps of the conducted studies were discussed for each area. Current concerns, need of future studies as well as related recommendations and suggestions were also presented.


Author(s):  
Barbora Badalíková ◽  
Jan Hrubý

In a pilot experiment established in a sugar beet growing region the erosive washing away of soil was studied in the years 2006 to 2008. The area is located at an altitude of 246 m with the long-term mean precipitation of 500 mm and the mean annual temperature of 8.4 °C. The soils are classified as Chernozem, moderately heavy, loamy, with a good supply of nutrients, humus content of 2.30 % and an alkaline soil reaction. Slope gradient is 12 %, exposition is NE. To study the role of intercrops in erosion control, three variants were established after the harvest of the main crop, two variants with different intercrops and one (control) with no intercrop. These were Variant 1 with Secale cereale L. var. multicaule METZG. ex ALEF., a non-freezing intercrop, Variant 2 with cluster mallow (Malva verticillata L.), a freezing intercrop, and a control variant with no intercrop. In Variant 1 Secale cereale L. var. multicaule was desiccated with the herbicide Roundup in early spring. All the variants involved maize as the main crop. In variants 1 and 2, maize was sown in intercrop residues after seedbed preparation by Vario and a compactor. In Variant 3 maize was sown after conventional seedbed preparation. For assessment of soil conditions soil samples were taken to determine soil physical and chemical properties and water content in the soil. Soil loss by erosion was determined using specially-designed pockets. Erosive washing away of soil was monitored during the entire growing season of maize. The variants in which intercrops were used were found very effective in soil erosion control. In Variant 3 (control) without surface crop residues, the washing away of soil was recorded with each heavy torrential rain. During the all years the total amount of soil loss by erosion in this treatment was 2.25 t . ha−1.


Land ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1166
Author(s):  
Bruno Gianmarco Carra ◽  
Giuseppe Bombino ◽  
Manuel Esteban Lucas-Borja ◽  
Pietro Denisi ◽  
Pedro Antonio Plaza-Álvarez ◽  
...  

The SCS-CN, Horton, and USLE-family models are widely used to predict and control runoff and erosion in forest ecosystems. However, in the literature there is no evidence of their use in Mediterranean forests subjected to prescribed fire and soil mulching. To fill this gap, this study evaluates the prediction capability for runoff and soil loss of the SCS-CN, Horton, MUSLE, and USLE-M models in three forests (pine, chestnut, and oak) in Southern Italy. The investigation was carried out at plot and event scales throughout one year, after a prescribed fire and post-fire soil mulching with fern. The SCS-CN and USLE-M models were accurate in predicting runoff volume and soil loss, respectively. In contrast, poor predictions of the modelled hydrological variables were provided by the models in unburned plots, and by the Horton and MUSLE models for all soil conditions. This inaccuracy may have been due to the fact that the runoff and erosion generation mechanisms were saturation-excess and rainsplash, while the Horton and MUSLE models better simulate infiltration-excess and overland flow processes, respectively. For the SCS-CN and USLE-M models, calibration was needed to obtain accurate predictions of surface runoff and soil loss; furthermore, different CNs and C factors must be input throughout the year to simulate the variability of the hydrological response of soil after fire. After calibration, two sets of CNs and C-factor values were suggested for applications of the SCS-CN and USLE-M models, after prescribed fire and fern mulching in Mediterranean forests. Once validated in a wider range of environmental contexts, these models may support land managers in controlling the hydrology of Mediterranean forests that are prone to wildfire risks.


2014 ◽  
Vol 3 (2) ◽  
pp. 1-11
Author(s):  
Hamdan Al Mahmoud ◽  
Khouri Al Issam ◽  
Arslan Awadis

This research was conducted through the rain season 2009 -2010, in Mehasseh Research Center at (Al Qaryatein), The area is characterized by a hot and dry climate in summer and cold in winter with an annual average rainfall of 114 mm. Three slopes (8%, 6%, 4%) were used in semicircular bunds water -harvesting techniques with bunds parallel to the contours lines at flow distance of 18, 12 and 6 m. The bunds were planted with Atriplex Halimus seedlings. Graded metal rulers were planted inside the bunds to determine soil loss and sedimentation associated with the surface runoff, and metallic tanks were placed at the end of the flow paths to determine agricultural soil loss from water runoff. A rain intensity gauge was placed near the experiment site to determine the rainfall intensity that produced runoff. The treatments were done in three replications. The amount of soil erosion (in tons per hectare per year) increased with increasing of the slope, the highest recorded value was 38.66 at slope of 8% and the lowest 0.05 at 4% slope. The amount of soil erosion also increased with increasing of water run distance, which was 38.66 T.ha-1.yr-1 at 18 m and 0.05 T.ha-1.yr-1 at 6 m . Bunds with different diameter of water harvesting reduced soil erosion by about 65% at slope of 8%, 55% at 6%, and 46% at 4%. The input parameters of Universal soil-loss equation were found to be suitable for determining soil erosion in this arid and semi-arid region. DOI: http://dx.doi.org/10.3126/ije.v3i2.10499 International Journal of the Environment Vol.3(2) 2014: 1-11


Sign in / Sign up

Export Citation Format

Share Document