New Earth-space infrastructures enable full-scale monitoring capability

Author(s):  
Eija Tanskanen ◽  
Tero Raita ◽  
Joni Tammi ◽  
Jouni Pulliainen ◽  
Hannu Koivula ◽  
...  

<p>The near-Earth environment is continuously changing by disturbances from external and internal sources. A combined research ecosystem is needed to be able to monitor short- and long-term changes and mitigate their societal effects. Observatories and large-scale infrastructures are the best way to guarantee continuous 24/7 observations and full-scale monitoring capability. Sodankylä Geophysical Observatory takes care of continuous geoenvironmental monitoring in Finland and together with national infrastructures such as FIN-EPOS and E2S enable extending and expanding the monitoring capability. European Plate Observing System of Finland (FIN-EPOS) and flexible instrument network of FIN-EPOS (FLEX-EPOS) will create a national pool of instruments including geophysical instruments targeted for solving topical questions of solid Earth physics. Scientific and new hardware building by FLEX-EPOS is essential in order to identify and reduce the impact of seismic, magnetic and geodetic hazards and understand the underlying processes.</p><p> </p><p>New national infrastructure Earth-Space Research Ecosystem (E2S) will combine measurements from atmosphere to near-Earth and distant space. This combined infrastructure will enable resolving how the Arctic environment change over the seasons, years, decades and centuries. We target our joint efforts to improve the situational awareness in the near-Earth and space environments, and in the Arctic for enhancing safety on ground and in space. This presentation will give details on the large-scale Earth-space infrastructures and research ecosystems and will give examples on how they can improve the safety of society.</p>

1984 ◽  
Vol 5 ◽  
pp. 61-68 ◽  
Author(s):  
T. Holt ◽  
P. M. Kelly ◽  
B. S. G. Cherry

Soviet plans to divert water from rivers flowing into the Arctic Ocean have led to research into the impact of a reduction in discharge on Arctic sea ice. We consider the mechanisms by which discharge reductions might affect sea-ice cover and then test various hypotheses related to these mechanisms. We find several large areas over which sea-ice concentration correlates significantly with variations in river discharge, supporting two particular hypotheses. The first hypothesis concerns the area where the initial impacts are likely to which is the Kara Sea. Reduced riverflow is associated occur, with decreased sea-ice concentration in October, at the time of ice formation. This is believed to be the result of decreased freshening of the surface layer. The second hypothesis concerns possible effects on the large-scale current system of the Arctic Ocean and, in particular, on the inflow of Atlantic and Pacific water. These effects occur as a result of changes in the strength of northward-flowing gradient currents associated with variations in river discharge. Although it is still not certain that substantial transfers of riverflow will take place, it is concluded that the possibility of significant cryospheric effects and, hence, large-scale climate impact should not be neglected.


2019 ◽  
Vol 19 (21) ◽  
pp. 13681-13699 ◽  
Author(s):  
Marleen Braun ◽  
Jens-Uwe Grooß ◽  
Wolfgang Woiwode ◽  
Sören Johansson ◽  
Michael Höpfner ◽  
...  

Abstract. The Arctic winter 2015–2016 was characterized by exceptionally low stratospheric temperatures, favouring the formation of polar stratospheric clouds (PSCs) from mid-December until the end of February down to low stratospheric altitudes. Observations by GLORIA (Gimballed Limb Observer for Radiance Imaging of the Atmosphere) on HALO (High Altitude and LOng range research aircraft) during the PGS (POLSTRACC–GW-LCYCLE II–SALSA) campaign from December 2015 to March 2016 allow the investigation of the influence of denitrification on the lowermost stratosphere (LMS) with a high spatial resolution. Two-dimensional vertical cross sections of nitric acid (HNO3) along the flight track and tracer–tracer correlations derived from the GLORIA observations document detailed pictures of wide-spread nitrification of the Arctic LMS during the course of an entire winter. GLORIA observations show large-scale structures and local fine structures with enhanced absolute HNO3 volume mixing ratios reaching up to 11 ppbv at altitudes of 13 km in January and nitrified filaments persisting until the middle of March. Narrow coherent structures tilted with altitude of enhanced HNO3, observed in mid-January, are interpreted as regions recently nitrified by sublimating HNO3-containing particles. Overall, extensive nitrification of the LMS between 5.0 and 7.0 ppbv at potential temperature levels between 350 and 380 K is estimated. The GLORIA observations are compared with CLaMS (Chemical Lagrangian Model of the Stratosphere) simulations. The fundamental structures observed by GLORIA are well reproduced, but differences in the fine structures are diagnosed. Further, CLaMS predominantly underestimates the spatial extent of HNO3 maxima derived from the GLORIA observations as well as the overall nitrification of the LMS. Sensitivity simulations with CLaMS including (i) enhanced sedimentation rates in case of ice supersaturation (to resemble ice nucleation on nitric acid trihydrate (NAT)), (ii) a global temperature offset, (iii) modified growth rates (to resemble aspherical particles with larger surfaces) and (iv) temperature fluctuations (to resemble the impact of small-scale mountain waves) slightly improved the agreement with the GLORIA observations of individual flights. However, no parameter could be isolated which resulted in a general improvement for all flights. Still, the sensitivity simulations suggest that details of particle microphysics play a significant role for simulated LMS nitrification in January, while air subsidence, transport and mixing become increasingly important for the simulated HNO3 distributions towards the end of the winter.


2020 ◽  
Vol 20 (3) ◽  
pp. 1301-1316
Author(s):  
Georgia Sotiropoulou ◽  
Sylvia Sullivan ◽  
Julien Savre ◽  
Gary Lloyd ◽  
Thomas Lachlan-Cope ◽  
...  

Abstract. In situ measurements of Arctic clouds frequently show that ice crystal number concentrations (ICNCs) are much higher than the number of available ice-nucleating particles (INPs), suggesting that secondary ice production (SIP) may be active. Here we use a Lagrangian parcel model (LPM) and a large-eddy simulation (LES) to investigate the impact of three SIP mechanisms (rime splintering, break-up from ice–ice collisions and drop shattering) on a summer Arctic stratocumulus case observed during the Aerosol-Cloud Coupling And Climate Interactions in the Arctic (ACCACIA) campaign. Primary ice alone cannot explain the observed ICNCs, and drop shattering is ineffective in the examined conditions. Only the combination of both rime splintering (RS) and collisional break-up (BR) can explain the observed ICNCs, since both of these mechanisms are weak when activated alone. In contrast to RS, BR is currently not represented in large-scale models; however our results indicate that this may also be a critical ice-multiplication mechanism. In general, low sensitivity of the ICNCs to the assumed INP, to the cloud condensation nuclei (CCN) conditions and also to the choice of BR parameterization is found. Finally, we show that a simplified treatment of SIP, using a LPM constrained by a LES and/or observations, provides a realistic yet computationally efficient way to study SIP effects on clouds. This method can eventually serve as a way to parameterize SIP processes in large-scale models.


2019 ◽  
Author(s):  
Marleen Braun ◽  
Jens-Uwe Grooß ◽  
Wolfgang Woiwode ◽  
Sören Johansson ◽  
Michael Höpfner ◽  
...  

Abstract. The Arctic winter 2015/16 was characterized by exceptionally cold stratospheric temperatures, favouring the formation of polar stratospheric clouds (PSCs) from mid-December until the end of February down to low stratospheric altitudes. Observations by GLORIA (Gimballed Limb Observer for Radiance Imaging of the Atmosphere) on HALO (High Altitude and LOng range research aircraft) during the PGS (POLSTRACC/GW-LCYLCE II/SALSA) campaign from December 2015 to March 2016 allow an investigation of the influence of denitrification on the lowermost stratosphere (LMS) with a high spatial resolution. For the first time vertical cross-sections of nitric acid (HNO3) along the flight track and tracer-tracer correlations derived from the GLORIA observations document detailed pictures of wide-spread nitrification of the Arctic LMS during the course of an entire winter. GLORIA observations show large-scale structures and local fine structures with strongly enhanced absolute HNO3 volume mixing ratios reaching up to 11 ppbv at altitudes of 11 km in January and nitrified filaments persisting until the middle of March. Narrow streaks of enhanced HNO3, observed in mid-January, are interpreted as regions recently nitrified by sublimating HNO3-containing particles. Overall, a nitrification of the LMS between 5.0 ppbv and 7.0 ppbv at potential temperature levels between 350 and 380 K is estimated. This extent of nitrification has never been observed before in the Arctic lowermost stratosphere. The GLORIA observations are compared with CLaMS (Chemical Lagrangian Model of the Stratosphere) simulations. The fundamental structures observed by GLORIA are well reproduced, but differences in the fine structures are diagnosed. Further, CLaMS predominantly underestimates the spatial extent of maximum HNO3 mixing ratios derived from the GLORIA observations as well as the enhancement at lower altitudes. Sensitivity simulations with CLaMS including (i) enhanced sedimentation rates in case of ice supersaturation (to resemble ice nucleation on NAT), (ii) a global temperature offset, (iii) modified growth rates (to resemble aspherical particles with larger surfaces) and (iv) temperature fluctuations (to resemble the impact of small-scale mountain waves) mostly improve the agreement with the GLORIA observations. The sensitivity simulations suggest that details of particle microphysics play a significant role for simulated LMS nitrification in January, while air subsidence, transport and mixing become increasingly important towards the end of the winter.


2003 ◽  
Vol 3 (2) ◽  
pp. 395-402 ◽  
Author(s):  
J.-U. Grooß ◽  
R. Müller

Abstract. Current stratospheric chemical model simulations underestimate substantially the large ozone loss rates that are derived for the Arctic from ozone sondes for January of some years. Until now, no explanation for this discrepancy has been found. Here, we examine the influence of intrusions of mid-latitude air into the polar vortex on these ozone loss estimates. This study focuses on the winter 1991/92, because during this winter the discrepancy between simulated and experimentally derived ozone loss rates is reported to be the largest. Also during the considered period the vortex was disturbed by a strong warming event with large-scale intrusions of mid-latitude air into the polar vortex, which is quite unusual for this time of the year. The study is based on simulations performed with the Chemical Lagrangian Model of the Stratosphere (CLaMS). Two methods for determination the ozone loss are investigated, the so-called vortex average approach and the Match method. The simulations for January 1992 show that the intrusions induce a reduction of vortex average ozone mixing ratio corresponding to a systematic offset of the ozone loss rate of about 12 ppb per day. This should be corrected for in the vortex average method. The simulations further suggest, that these intrusions do not cause a significant bias for the Match method due to effective quality control measures in the Match technique.


2020 ◽  
Vol 5 (12) ◽  
pp. 153-163
Author(s):  
A. A. SHCHEGOLKOVA ◽  
◽  
◽  

The subject of this article is the economic environment of the global liquefied natural gas (LNG) market. The article assesses the development trends in the global liquefied natural gas market, identifies the key driving forces of the global LNG market, analyzes the existing contractual models in the global LNG market. The study uses a general scientific methodology that provides for a systematic, comprehensive approach to assessing the current economic situation in the global LNG market. A significant array of statistical data and factual material on the global LNG market was analyzed, the results of the research were obtained using statistical methods of economic analysis. As a result, the author conducted an analysis of the trends in the global LNG market, which made it possible to identify the key driving forces behind changes in market dynamics. The dynamics and structure of the global LNG market for the period 2015–2019 have been investigated. An assessment of Russia's position in the global LNG market is given. The impact of the "coronacrisis" on the global LNG market has been studied. The development and prospects of large-scale gas projects of the main LNG exporting countries are shown, the influence of the price environment on the implementation of LNG projects is investigated. It is revealed that geopolitical factors have become decisive in the formation of the world energy policy. The possible impact of the legislative expansion of the resource base of the Arctic territories on the growth of production and export of Russian LNG has been determined. It is concluded that the strategic goal of Russia's energy geopolitics is to modernize the existing export model of LNG for the long term. Modernization of the existing energy export strategy will strengthen the country's competitive position in the global LNG market, thereby becoming the basis for Russia's regional presence in the Arctic, where the main increase in LNG capacity is expected.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jiaxu Zhang ◽  
Wilbert Weijer ◽  
Michael Steele ◽  
Wei Cheng ◽  
Tarun Verma ◽  
...  

AbstractThe Beaufort Gyre (BG), the largest Arctic Ocean freshwater reservoir, has drastically increased its liquid freshwater content by 40% in the past two decades. If released within a short period, the excess freshwater could potentially impact the large-scale ocean circulation by freshening the upper subpolar North Atlantic. Here, we track BG-sourced freshwater using passive tracers in a global ocean sea-ice model and show that this freshwater exited the Arctic mostly through the Canadian Arctic Archipelago, rather than Fram Strait, during an historical release event in 1983–1995. The Labrador Sea is the most affected region in the subpolar North Atlantic, with a freshening of 0.2 psu on the western shelves and 0.4 psu in the Labrador Current. Given that the present BG freshwater content anomaly is twice the historical analog studied here, the impact of a future rapid release on Labrador Sea salinity could be significant, easily exceeding similar fluxes from Greenland meltwater.


2013 ◽  
Vol 13 (9) ◽  
pp. 25219-25251 ◽  
Author(s):  
T. Koenigk ◽  
A. Devasthale ◽  
K.-G. Karlsson

Abstract. Spatial and temporal variations of summer sea ice albedo over the Arctic are analyzed using an ensemble of historical CMIP5 model simulations. The results are compared to the CLARA-SAL product that is based on long-term satellite observations. The summer sea ice albedo varies substantially among CMIP5 models and many models show large biases compared to the CLARA-SAL product. Single summer months show an extreme spread of ice albedo among models; July-values vary between 0.3 and 0.7 for individual models. The CMIP5 ensemble mean, however, agrees relatively well in the Central Arctic but shows too high ice albedo near the ice edges and coasts. In most models, the ice albedo is spatially too uniformly distributed. The summer to summer variations seem to be underestimated in many global models and almost no model is able to fully reproduce the temporal evolution of ice albedo throughout the summer. While the satellite observations indicate the lowest ice albedos during August, the models show minimum values in July and substantially higher values in August. Instead, the June values are often lower in the models than in the satellite observations. This is probably due to too high surface temperatures in June, leading to an early start of the melt season and too cold temperatures in August causing an earlier refreezing in the models. The summer sea ice albedo in the CMIP5 models is strongly governed by surface temperature and snow conditions, particularly during the period of melt onset in early summer and refreezing in late summer. The summer surface net solar radiation of the ice covered Arctic areas is highly related to the ice albedo in the CMIP5 models. However, the impact of the ice albedo on the sea ice conditions in the CMIP5 models is not clearly visible. This indicates the importance of other Arctic and large scale processes for the sea ice conditions.


2008 ◽  
Vol 55 ◽  
pp. 35-86 ◽  
Author(s):  
Lance F. Bosart ◽  
Alicia C. Wasula ◽  
Walter H. Drag ◽  
Keith W. Meier

Abstract This paper begins with a review of basic surface frontogenesis concepts with an emphasis on fronts located over sloping terrain adjacent to mountain barriers and fronts located in large-scale baroclinic zones close to coastlines. The impact of cold-air damming and differential diabatic heating and cooling on frontogenesis is considered through two detailed case studies of intense surface fronts. The first case, from 17 to 18 April 2002, featured the westward passage of a cold (side-door) front across coastal eastern New England in which 15°–20°C temperature decreases were observed in less than one hour. The second case, from 28 February to 4 March 1972, featured a long-lived front that affected most of the United States from the Rockies to the Atlantic coast and was noteworthy for a 50°C temperature contrast between Kansas and southern Manitoba, Canada. In the April 2002 case most of New England was initially covered by an unusually warm, dry air mass. Dynamical anticyclogenesis over eastern Canada set the stage for a favorable pressure gradient to allow chilly marine air to approach coastal New England from the east. Diabatic cooling over the chilly (5°–8°C) waters of the Gulf of Maine allowed surface pressures to remain relatively high offshore while diabatic heating over the land (31°–33°C temperatures) enabled surface pressures to fall relative to over the ocean. The resulting higher pressures offshore resulted in an onshore cold push. Frontal intensity was likely enhanced prior to leaf out and grass green-up as virtually all of the available insolation went into sensible heating. The large-scale environment in the February–March 1972 case favored the accumulation of bitterly cold arctic air in Canada. Frontal formation occurred over northern Montana and North Dakota as the arctic air moved slowly southward in conjunction with surface pressure rises east of the Canadian Rockies. The arctic air accelerated southward subsequent to lee cyclogenesis–induced pressure falls ahead of an upstream trough that crossed the Rockies. The southward acceleration of the arctic air was also facilitated by dynamic anticyclogenesis in southern Canada beneath a poleward jet-entrance region. Frontal intensity varied diurnally in response to differential diabatic heating. Three types of cyclogenesis events were observed over the lifetime of the event: 1) low-amplitude frontal waves with no upper-level support, 2) low-amplitude frontal waves that formed in a jet-entrance region, and 3) cyclones that formed ahead of advancing upper-level troughs. All cyclones were either nondeveloping or weak developments despite extreme baroclinicity, likely the result of large atmospheric static stability in the arctic frontal zone and unfavorable alongfront stretching deformation. Significant frontal–mountain interactions were observed over the Rockies and the Appalachians.


Land ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 105
Author(s):  
Evdokia Burtseva ◽  
Anatoliy Sleptsov ◽  
Anna Bysyina ◽  
Alla Fedorova ◽  
Gavril Dyachkovski ◽  
...  

The Republic of Sakha (Yakutia; RS(Y)) is located in the northeast of Siberia (Russia) in the basins of the Lena, Yana, and Indigirka rivers, in the lower reaches of the Kolyma River. Yakutia is an industrial–agrarian republic with a developed mining, fuel, and energy industry. Indigenous peoples live mainly in the Arctic regions, where the large-scale development of mineral resources is planned, and South Yakutia, where the mining industry is well developed. The aim of this study is the development of methodological approaches to assessing the impact of the mining industry on the natural environment and the social sphere in the places of residence and traditional economic activities of the indigenous peoples of the North. We used the results of research work (R&D), materials of expeditionary work, and regulatory documents of the Republic of Sakha (Yakutia) and the Russian Federation (RF). The state of the environment (ES) was assessed on the basis of the analysis of indicators for three areas: (a) anthropogenic load, (b) environmental and social consequences, and (c) resistance of natural complexes to technogenic impacts. In total, 22 indicators were used for the 3 areas, for example, population density, person/km2; the volume of extraction of rock mass, million m3; and emissions, t/year. To bring dissimilar indicators into comparable ones, we used a methodological approach with the use of the social risk index (SRI). In Arctic regions (mainly agricultural), the ES is in a favorable and relatively favorable state: SRI 0.61–0.70; in the central regions (mainly agricultural), it is satisfactory and relatively satisfactory: SRI 0.71–1.0; in the southern and western regions with a developed mining industry, it is relatively tense and tense: SRI 1.01–3.0. An extremely tense state of environmental conditions has developed in the city of Yakutsk: SRI ≥ 3. Generally, the deterioration of the environmental situation and vital activity of the indigenous peoples in investigated Arctic region correlated with the impact of the mining industry.


Sign in / Sign up

Export Citation Format

Share Document