scholarly journals Dancing Sprites Above a Lightning Mapping Array - an analysis of the storm and flash/sprite developments

Author(s):  
Maja Tomicic ◽  
Serge Soula ◽  
Thomas Farges ◽  
Serge Prieur ◽  
Eric Defer

<p>This study is a multi-instrumental analysis of a ~20-hour duration northwestern Mediterranean storm on September 21, 2019 that produced 21 sprites recorded with a video camera, of which 19 (90 %) were dancing sprites. A dancing sprite is a phenomenon in which sequences of sprites appear in succession with time intervals of no more than a few hundred milliseconds. For the most part, the individual sprites are a consequence of discrete strokes from one extended lightning flash. In this case, we find that 87.5% of the sprite sequences were triggered by distinct positive cloud-to-ground (+CG) strokes. The time between successive sprite parent (SP)+CG strokes within the same dancing sprite was between 40 and 516 ms, and the distance ranged between 2 and 87 km. The storm size and vertical development were analyzed from the infrared radiometer onboard Meteosat Second Generation satellite and the lightning activity was documented with several lightning location systems (LLS): the French LF network (Météorage), the GLD360 network operated by Vaisala company, the VHF SAETTA Lightning Mapping Array (LMA) system located in Corsica. Additionally, the vertical electric field at the time of the dancing sprites was measured with a broadband ELF vertical dipole whip antenna ~700 km away from the storm. The SAETTA LMA allows to map the SP+CG flashes in their both full extent and temporal evolution, and to infer the charge structure of the parent storm. We show that the SP+CG flashes followed a common propagation: they originated from the convective and very electrically active regions of the storm, and then escaped and extended horizontally far (tens of km) into the stratiform cloud region. Most of the sprites were triggered by +CG strokes in the stratiform region often following flash development resembling cutoff of a long negative leader. Additionally, we present a detailed analysis of two dancing sprite events in which the SP+CGs triggered new bidirectional breakdown with fast moving leaders that extended into the stratiform cloud region and resulted in new SP+CG strokes. In both events, we find in both LLS and ELF vertical electric field records, that the last sprite sequence was triggered by three almost simultaneous +CG strokes.</p>

Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1505
Author(s):  
Byeongjun Lee ◽  
Younghyeon Song ◽  
Chan Park ◽  
Jungmin Kim ◽  
Jeongbeom Kang ◽  
...  

The patterning of electrospun fibers is a key technology applicable to various fields. This study reports a novel focused patterning method for electrospun nanofibers that uses a cylindrical dielectric guide. The finite elements method (FEM) was used to analyze the electric field focusing phenomenon and ground its explanation in established theory. The horizontal and vertical electric field strengths in the simulation are shown to be key factors in determining the spatial distribution of nanofibers. The experimental results demonstrate a relationship between the size of the cylindrical dielectric guide and that of the electrospun area accumulated in the collector. By concentrating the electric field, we were able to fabricate a pattern of less than 6 mm. The demonstration of continuous line and square patterning shows that the electrospun area can be well controlled. This novel patterning method can be used in a variety of applications, such as sensors, biomedical devices, batteries, and composites.


2019 ◽  
Vol 30 (34) ◽  
pp. 345206 ◽  
Author(s):  
Hyunjin Ji ◽  
Hojoon Yi ◽  
Sakong Wonkil ◽  
Hyun Kim ◽  
Seong Chu Lim

2017 ◽  
Vol 5 (46) ◽  
pp. 12228-12234 ◽  
Author(s):  
Xuhui Yang ◽  
Baisheng Sa ◽  
Hongbing Zhan ◽  
Zhimei Sun

A vertical electric field-modulated data storage device based on bilayer InSe.


2013 ◽  
Vol 53 (10) ◽  
pp. 1704-1708 ◽  
Author(s):  
Zhang Huaiwei ◽  
Shi Xiaoyan ◽  
Zhang Bo ◽  
Hong Xin

2017 ◽  
Vol 12 (1) ◽  
Author(s):  
Fei Guo ◽  
Yaping Wu ◽  
Zhiming Wu ◽  
Congming Ke ◽  
Changjie Zhou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document