Effect of soil heterogeneity on the optimal design of in-situ groundwater bioremediation systems

Author(s):  
Tinesh Pathania ◽  
T Iype Eldho ◽  
Andrea Bottacin-Busolin

<p>The use of optimization approaches for designing in-situ groundwater bioremediation systems has been demonstrated in a number of previous studies under the assumption of homogenous soil. However, in real applications the soil is typically heterogeneous and knowledge of the spatial conductivity distribution is, to some degree, uncertain. Here, a systematic attempt is made to quantify the effect of soil heterogeneity on the optimal design of in-situ bioremediation systems. To determine the optimal placement of injection and extraction wells within the computational domain, the meshless element-free Galerkin method (EFGM) was coupled with particle swarm optimization (PSO), resulting in a simulation-optimization (S/O) model which is referred to as BIOEFGM-PSO. A hypothetical case study is considered where the design of an in-situ bioremediation system is optimized considering different degrees of heterogeneity of the porous medium. Heterogeneous conductivity fields are generated using a pseudo-random field generator with same mean and varying variance and correlation lengths. The BIOEFGM-PSO model was then applied to the different soil scenarios, and the resulting bioremediation costs were compared. Results show that the optimal placement of injection and extraction wells depends on the soil properties and, on average, heterogeneous soils have higher in-situ bioremediation costs compared with a homogeneous soil with the same mean conductivity. This highlights the importance of considering soil heterogeneity in designing cost-effective in-situ bioremediation systems, and further demonstrates the general applicability of the BIOEFGM-PSO model.</p>

2006 ◽  
Vol 14 (2) ◽  
pp. 478-482
Author(s):  
Jamie Robinson ◽  
Russell Thomas ◽  
Steve Wallace ◽  
Paddy Daly ◽  
Robert Kalin

2009 ◽  
Author(s):  
Paul Hatzinger ◽  
Jay Diebold

2000 ◽  
Vol 42 (5-6) ◽  
pp. 371-376 ◽  
Author(s):  
J.A. Puhakka ◽  
K.T. Järvinen ◽  
J.H. Langwaldt ◽  
E.S. Melin ◽  
M.K. Männistö ◽  
...  

This paper reviews ten years of research on on-site and in situ bioremediation of chlorophenol contaminated groundwater. Laboratory experiments on the development of a high-rate, fluidized-bed process resulted in a full-scale, pump-and-treat application which has operated for several years. The system operates at ambient groundwater temperature of 7 to 9°C at 2.7 d hydraulic retention time and chlorophenol removal efficiencies of 98.5 to 99.9%. The microbial ecology studies of the contaminated aquifer revealed a diverse chlorophenol-degrading community. In situ biodegradation of chlorophenols is controlled by oxygen availability, only. Laboratory and pilot-scale experiments showed the potential for in situ aquifer bioremediation with iron oxidation and precipitation as a potential problem.


Microscopy ◽  
2020 ◽  
Author(s):  
Xiaoguang Li ◽  
Kazutaka Mitsuishi ◽  
Masaki Takeguchi

Abstract Liquid cell transmission electron microscopy (LCTEM) enables imaging of dynamic processes in liquid with high spatial and temporal resolution. The widely used liquid cell (LC) consists of two stacking microchips with a thin wet sample sandwiched between them. The vertically overlapped electron-transparent membrane windows on the microchips provide passage for the electron beam. However, microchips with imprecise dimensions usually cause poor alignment of the windows and difficulty in acquiring high-quality images. In this study, we developed a new and efficient microchip fabrication process for LCTEM with a large viewing area (180 µm × 40 µm) and evaluated the resultant LC. The new positioning reference marks on the surface of the Si wafer dramatically improve the precision of dicing the wafer, making it possible to accurately align the windows on two stacking microchips. The precise alignment led to a liquid thickness of 125.6 nm close to the edge of the viewing area. The performance of our LC was demonstrated by in situ transmission electron microscopy imaging of the dynamic motions of 2-nm Pt particles. This versatile and cost-effective microchip production method can be used to fabricate other types of microchips for in situ electron microscopy.


2021 ◽  
pp. 100773
Author(s):  
Kamoldara Reansuwan ◽  
Rotsukon Jawana ◽  
Saoharit Nitayavardhana ◽  
Sirichai Koonaphapdeelert
Keyword(s):  

2021 ◽  
pp. 1-14
Author(s):  
Shamsul Haq ◽  
Asma Absar Bhatti ◽  
Suhail Ahmad Bhat ◽  
Shafat Ahmad Mir ◽  
Ansar ul Haq

2001 ◽  
Vol 16 (1) ◽  
pp. 37-42 ◽  
Author(s):  
Katsuji Tani ◽  
Tomotada Iwamoto ◽  
Kazuo Fujimoto ◽  
Masao Nasu

Sign in / Sign up

Export Citation Format

Share Document