Radiocarbon dating of individual foram tests show that alleged Lessepsian species are of Holocene age

Author(s):  
Paolo G. Albano ◽  
Anna Sabbatini ◽  
Jonathan Lattanzio ◽  
Jan Steger ◽  
Sönke Szidat ◽  
...  

<p>The Lessepsian invasion – the largest marine biological invasion – followed the opening of the Suez Canal in 1869 (81 years BP). Shortly afterwards, tropical species also distributed in the Red Sea appeared on Mediterranean shores: it was the dawn of what would become the invasion of several hundred tropical species. The time of the Suez Canal opening coincided with an acceleration in natural history exploration and description, but the eastern sectors of the Mediterranean Sea lagged behind and were thoroughly explored only in the second half of the 20<sup>th</sup> century. Many parts are still insufficiently studied today. Baseline information on pre-Lessepsian ecosystem states is thus scarce. This knowledge gap has rarely been considered by invasion scientists: every new finding of species belonging to tropical clades has been assumed to be a Lessepsian invader.</p><p>We here question this assumption by radiocarbon dating seven individual tests of miliolids – imperforated calcareous foraminifera – belonging to five alleged non-indigenous species. Tests were found in two sediment cores collected at 30 and 40 m depth off Ashqelon, on the Mediterranean Israeli shelf. We dated one <em>Cribromiliolinella milletti </em>(core at 40 m, 20 cm sediment depth), three <em>Nodophthalmidium antillarum </em>(core at 40 m, 35 cm sediment depth), one <em>Miliolinella </em>cf. <em>fichteliana </em>(core at 30 m, 110 cm sediment depth), one <em>Articulina alticostata </em>(core at 40 m, 35 cm sediment depth) and one <em>Spiroloculina antillarum </em>(core at 30 m, 110 cm sediment depth). All foraminiferal tests proved to be of Holocene age, with a median calibrated age spanning between 749 and 8285 years BP. Only one test of <em>N. antillarum</em> showed a 2-sigma error overlapping the time of the opening of the Suez Canal, but with a median age of 1123 years BP. Additionally, a thorough literature search resulted in a further record of <em>S. antillarum</em> in a core interval dated 1820–2064 years BP in Turkey.</p><p>Therefore, these foraminiferal species are not introduced, but native species. They are all circumtropical or Indo-Pacific and in the Mediterranean distributed mostly in the eastern sectors (only <em>S. antillarum</em> occurs also in the Adriatic Sea). Two hypotheses can explain our results: these species are Tethyan relicts that survived the Messinian salinity crisis (5.97–5.33 Ma) and the glacial periods of the Pleistocene in the Eastern Mediterranean, which may have never desiccated completely during the Messinian crisis and which may have worked as a warm-water refugium in the Pleistocene; or they entered the Mediterranean Sea from the Red Sea more recently but before the opening of the Suez Canal, for example during the Last Interglacial (MIS5e) high-stand (125,000 years BP) when the flooded Isthmus of Suez enabled exchanges between the Mediterranean and the Indo-Pacific fauna. The recognition that some alleged Lessepsian invaders are in fact native species influences our understanding of the invasion process, its rates and environmental correlates.</p>

2015 ◽  
Vol 24 (2) ◽  
pp. 43-45 ◽  
Author(s):  
Bella Galil ◽  
Ferdinando Boero ◽  
Simona Fraschetti ◽  
Stefano Piraino ◽  
Marnie Campbell ◽  
...  

2014 ◽  
Vol 17 (4) ◽  
pp. 454-462
Author(s):  
Hamed A. El-Serehy ◽  
Fahad A. Al-Misned ◽  
Nasser S. Abdel-Rahman ◽  
Khaled A. Al-Rasheid

1982 ◽  
Vol 35 (3) ◽  
pp. 460-465
Author(s):  
Nabil Hilaly

It is recorded that Egypt was the first country to dig a canal to promote world trade; the first canal was dug in the reign of Pharaoh Senusret III (1887–1849 B.C.), to link the Mediterranean Sea with the Red Sea through the Nile delta. This canal, often abandoned due to silting, was reopened for navigation by later Pharaohs and finally by Amro Ibn El Ass in A.D. 640 after which it remained open for 150 years.


Author(s):  
Carlo Nike Bianchi ◽  
Francesco Caroli ◽  
Paolo Guidetti ◽  
Carla Morri

Global warming is facilitating the poleward range expansion of plant and animal species. In the Mediterranean Sea, the concurrent temperature increase and abundance of (sub)tropical non-indigenous species (NIS) is leading to the so-called ‘tropicalization’ of the Mediterranean Sea, which is dramatically evident in the south-eastern sectors of the basin. At the same time, the colder north-western sectors of the basin have been said to undergo a process of ‘meridionalization’, that is the establishment of warm-water native species (WWN) previously restricted to the southern sectors. The Gulf of Genoa (Ligurian Sea) is the north-western reach for southern species of whatever origin in the Mediterranean. Recent (up to 2015) observations of NIS and WWN by diving have been collated to update previous similar inventories. In addition, the relative occurrences of both groups of southern species have been monitored by snorkelling between 2009 and 2015 in shallow rocky reefs at Genoa, and compared with the trend in air and sea surface temperatures. A total of 20 southern species (11 NIS and 9 WWN) was found. Two WWN (the zebra seabream Diplodus cervinus and the parrotfish Sparisoma cretense) and three NIS (the SW Atlantic sponge Paraleucilla magna, the Red Sea polychaete Branchiomma luctuosum, and the amphi-American and amphi-Atlantic crab Percnon gibbesi) are new records for the Ligurian Sea, whereas juveniles of the Indo-Pacific bluespotted cornetfish Fistularia commersonii have been found for the first time. While temperature has kept on increasing for the whole period, with 2014 and 2015 being the warmest years since at least 1950, the number of WWN increased linearly, that of NIS increased exponentially, contradicting the idea of meridionalization and supporting that of tropicalization even in the northern sectors of the Mediterranean basin.


The Holocene ◽  
2020 ◽  
Vol 30 (10) ◽  
pp. 1438-1450
Author(s):  
Konstantina Agiadi ◽  
Paolo G Albano

The eastern Mediterranean marine ecosystem is undergoing massive modification due to biological invasions, overfishing, habitat deterioration, and climate warming. Our ability to quantify these changes is severely hindered by the lack of an appropriate baseline; most ecological datasets date back a few decades only and show already strong signatures of impact. Surficial death assemblages (DAs) offer an alternative data source that provides baseline information on community structure and composition. In this study, we reconstruct the marine fish fauna of the southern shallow Israeli shelf before the opening of the Suez Canal based on fish otoliths. We quantify the age of the otolith DAs by radiocarbon dating, and describe its taxonomic composition, geographic affinity, and trophic structure. Additionally, we test by radiocarbon dating the hypothesis that Bregmaceros, a presumed Lessepsian invader with continuous presence in the Mediterranean throughout the late Cenozoic, is a relict species. The otolith DA dates back to the mid-Holocene because 75% of the dated otoliths of the native species are older than the opening of the Suez Canal in 1869, suggesting that the DA is a proper baseline for quantifying modern impacts. Consistently, 97% of the otoliths and 88% of the species we collected belong to native Mediterranean species. The native anchovy Engraulis encrasicolus dominates the DAs, although gobiids are the most diverse group (14 species, 28%). The DAs show similar trophic structure to present-day pristine Mediterranean coastal fish assemblages. Two non-indigenous species are recorded here for the first time in the Mediterranean Sea, Amblygobius albimaculatus and Callogobius sp., highlighting the importance of DAs for detecting non-indigenous species. Finally, Bregmaceros otoliths are modern, not supporting the previous hypothesis that the taxon is a Pleistocene relict.


2019 ◽  
Vol 19 (10) ◽  
pp. 7209-7232 ◽  
Author(s):  
Efstratios Bourtsoukidis ◽  
Lisa Ernle ◽  
John N. Crowley ◽  
Jos Lelieveld ◽  
Jean-Daniel Paris ◽  
...  

Abstract. Atmospheric non-methane hydrocarbons (NMHCs) have been extensively studied around the globe due to their importance to atmospheric chemistry and their utility in emission source and chemical sink identification. This study reports on shipborne NMHC measurements made around the Arabian Peninsula during the AQABA (Air Quality and climate change in the Arabian BAsin) ship campaign. The ship traversed the Mediterranean Sea, the Suez Canal, the Red Sea, the northern Indian Ocean, and the Arabian Gulf, before returning by the same route. The Middle East is one of the largest producers of oil and gas (O&G), yet it is among the least studied. Atmospheric mixing ratios of C2–C8 hydrocarbons ranged from a few ppt in unpolluted regions (Arabian Sea) to several ppb over the Suez Canal and Arabian Gulf (also known as the Persian Gulf), where a maximum of 166.5 ppb of alkanes was detected. The ratio between i-pentane and n-pentane was found to be 0.93±0.03 ppb ppb−1 over the Arabian Gulf, which is indicative of widespread O&G activities, while it was 1.71±0.06 ppb ppb−1 in the Suez Canal, which is a characteristic signature of ship emissions. We provide evidence that international shipping contributes to ambient C3–C8 hydrocarbon concentrations but not to ethane, which was not detected in marine traffic exhausts. NMHC relationships with propane differentiated between alkane-rich associated gas and methane-rich non-associated gas through a characteristic enrichment of ethane over propane atmospheric mixing ratios. Utilizing the variability–lifetime relationship, we show that atmospheric chemistry governs the variability of the alkanes only weakly in the source-dominated areas of the Arabian Gulf (bAG=0.16) and along the northern part of the Red Sea (bRSN=0.22), but stronger dependencies are found in unpolluted regions such as the Gulf of Aden (bGA=0.58) and the Mediterranean Sea (bMS=0.48). NMHC oxidative pair analysis indicated that OH chemistry dominates the oxidation of hydrocarbons in the region, but along the Red Sea and the Arabian Gulf the NMHC ratios occasionally provided evidence of chlorine radical chemistry. These results demonstrate the utility of NMHCs as source/sink identification tracers and provide an overview of NMHCs around the Arabian Peninsula.


Author(s):  
Carla Morri ◽  
Stefania Puce ◽  
Carlo Nike Bianchi ◽  
Ghazi Bitar ◽  
Helmut Zibrowius ◽  
...  

Despite the hydroid fauna of the Mediterranean Sea being considered one of the best known in the world, the eastern basin of the Mediterranean Sea remains nearly unexplored. This paper reports on 38 species collected along the Levant Sea coast (mainly Lebanon), of which three are new records for the Mediterranean and nine for the Levant Sea. Six alien species, i.e. Eudendrium carneum, Sertularia marginata, Sertularia techocarpa, Macrorhynchia philippina, Diphasia digitalis and Dynamena quadridentata, are described in detail and illustrated on the basis of Levant Sea material. The last four species are considered as immigrants from the Red Sea. The synonymy of Sertularia stechowi, described from Japan, with S. techocarpa is established. Taken as a whole, the collection comprised a majority of circum-(sub)tropical species, and a reduced proportion of Atlantic–Mediterranean elements and Mediterranean endemics. The ecology (seasonality, depth distribution and habitat preference) of the indigenous species resulted similar to what is known for the more studied western Mediterranean, with some exceptions. Adding the present species inventory to the scanty published information, the total of hydroid species known from the Levant Sea rises to 70, indicating the need for future investigation in this sector of the Mediterranean Sea.


2010 ◽  
Vol 11 (2) ◽  
pp. 369 ◽  
Author(s):  
C. TURAN ◽  
D. YAGLIOGLU ◽  
D. ERGUDEN ◽  
M. GURLEK ◽  
B. SONMEZ

Two specimens of the alien cardinal fish Apogon fasciatus (White, 1790) are recorded for the first time from Turkey and second time from the Mediterranean Sea. This is the fourth Indo-Pacific apogonid species documented in the Mediterranean Sea, and the introduction of this species to the eastern Mediterranean is due to migration from the Red Sea via the Suez Canal.


2020 ◽  
Vol 24 (6) ◽  
pp. 117-134
Author(s):  
Elham M. Abdelhak ◽  
Fedekar F. Madkour ◽  
Azza A. El Ganainy ◽  
Mohamed A. Abu El-Regal ◽  
Mohamed I. Ahmed

Sign in / Sign up

Export Citation Format

Share Document