Generic concepts for organising data management in research projects

Author(s):  
Ivonne Anders ◽  
Swati Gehlot ◽  
Andrea Lammert ◽  
Karsten Peters-von Gehlen

<p>Since few years Research Data Management is becoming an increasingly important part of scientific projects regardless of the number of topics or subjects, researchers or institutions involved. The bigger the project, the more are the data organization and data management requirements in order to assure the best outcome of the project. Despite this, projects rarely have clear structures or responsibilities for data management. The importance of clearly defining data management and also budgeting for it is often underestimated and/or neglected. A rather scarce number of reports and documentations explaining the research data management in certain projects and detailing best practice examples can be found in the current literature.  Additionally, these are often mixed up with topics of the general project management. Furthermore, these examples are very focused on the certain issues of the described projects and thus, a transferability (or general application) of provided methods is very difficult.</p><p>This contribution presents generic concepts of research data management with an effort to separate them from general project management tasks. Project size, details among the diversity of topics and the involved researcher, play an important role in shaping data management and determining which methods of data management can add value to the outcome of a project. We especially focus on different organisation types, including roles and responsibilities for data management in projects of different sizes. Additionally, we show how and when also education should be included, but also how important agreements in a project are.</p>

2014 ◽  
Vol 9 (1) ◽  
pp. 253-262 ◽  
Author(s):  
Belinda Norman ◽  
Kate Valentine Stanton

This paper explores three stories, each occurring a year apart, illustrating an evolution toward a strategic vision for Library leadership in supporting research data management at the University of Sydney. The three stories describe activities undertaken throughout the Seeding the Commons project and beyond, as the establishment of ongoing roles and responsibilities transition the Library from project partner to strategic leader in the delivery of research data management support. Each story exposes key ingredients that characterise research data management support: researcher engagement; partnerships; and the complementary roles of policy and practice.


2009 ◽  
Vol 4 (2) ◽  
pp. 158-170 ◽  
Author(s):  
Graham Pryor ◽  
Martin Donnelly

What are the roles necessary to effective data management and what kinds of expertise are needed by the researchers and data specialists who are filling those roles?  These questions were posed at a workshop of data creators and curators whose delegates challenged the DCC and RIN to identify the training needs and career opportunities for the broad cohort that finds itself working in data management – sometimes by design but more often by accident.  This paper revisits previous investigations into the roles and responsibilities required by a “data workforce”, presents a representative spectrum of informed opinion from the DCC Research Data Management Forum, and makes some recommendations for raising capability, capacity and status.


2012 ◽  
Vol 7 (1) ◽  
pp. 126-138 ◽  
Author(s):  
Liz Lyon

In this paper, Liz Lyon explores how libraries can re-shape to better reflect the requirements and challenges of today’s data-centric research landscape. The Informatics Transform presents five assertions as potential pathways to change, which will help libraries to re-position, re-profile, and re-structure to better address research data management challenges. The paper deconstructs the institutional research lifecycle and describes a portfolio of ten data support services which libraries can deliver to support the research lifecycle phases. Institutional roles and responsibilities for research data management are also unpacked, building on the framework from the earlier Dealing with Data Report. Finally, the paper examines critical capacity and capability challenges and proposes some innovative steps to addressing the significant skills gaps.


2013 ◽  
Vol 8 (2) ◽  
pp. 68-88 ◽  
Author(s):  
Leigh Garrett ◽  
Marie-Therese Gramstadt ◽  
Carlos Silva

Research data is increasingly perceived as a valuable resource and, with appropriate curation and preservation, it has much to offer learning, teaching, research, knowledge transfer and consultancy activities in the visual arts. However, very little is known about the curation and preservation of this data: none of the specialist arts institutions have research data management policies or infrastructure and anecdotal evidence suggests that practice is ad hoc, left to individual researchers and teams with little support or guidance. In addition, the curation and preservation of such diverse and complex digital resources as found in the visual arts is, in itself, challenging. Led by the Visual Arts Data Service, a research centre of the University for the Creative Arts, in collaboration with the Glasgow School of Art; Goldsmiths College, University of London; and University of the Arts London, and funded by JISC, the KAPTUR project (2011-2013) seeks to address the lack of awareness and explore the potential of research data management systems in the arts by discovering the nature of research data in the visual arts, investigating the current state of research data management, developing a model of best practice applicable to both specialist arts institutions and arts departments in multidisciplinary institutions, and by applying, testing and piloting the model with the four institutional partners. Utilising the findings of the KAPTUR user requirement and technical review, this paper will outline the method and selection of an appropriate research data management system for the visual arts and the issues the team encountered along the way.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
M. Suhr ◽  
C. Lehmann ◽  
C. R. Bauer ◽  
T. Bender ◽  
C. Knopp ◽  
...  

Abstract Background Biomedical research projects deal with data management requirements from multiple sources like funding agencies’ guidelines, publisher policies, discipline best practices, and their own users’ needs. We describe functional and quality requirements based on many years of experience implementing data management for the CRC 1002 and CRC 1190. A fully equipped data management software should improve documentation of experiments and materials, enable data storage and sharing according to the FAIR Guiding Principles while maximizing usability, information security, as well as software sustainability and reusability. Results We introduce the modular web portal software menoci for data collection, experiment documentation, data publication, sharing, and preservation in biomedical research projects. Menoci modules are based on the Drupal content management system which enables lightweight deployment and setup, and creates the possibility to combine research data management with a customisable project home page or collaboration platform. Conclusions Management of research data and digital research artefacts is transforming from individual researcher or groups best practices towards project- or organisation-wide service infrastructures. To enable and support this structural transformation process, a vital ecosystem of open source software tools is needed. Menoci is a contribution to this ecosystem of research data management tools that is specifically designed to support biomedical research projects.


GigaScience ◽  
2020 ◽  
Vol 9 (10) ◽  
Author(s):  
Daniel Arend ◽  
Patrick König ◽  
Astrid Junker ◽  
Uwe Scholz ◽  
Matthias Lange

Abstract Background The FAIR data principle as a commitment to support long-term research data management is widely accepted in the scientific community. Although the ELIXIR Core Data Resources and other established infrastructures provide comprehensive and long-term stable services and platforms for FAIR data management, a large quantity of research data is still hidden or at risk of getting lost. Currently, high-throughput plant genomics and phenomics technologies are producing research data in abundance, the storage of which is not covered by established core databases. This concerns the data volume, e.g., time series of images or high-resolution hyper-spectral data; the quality of data formatting and annotation, e.g., with regard to structure and annotation specifications of core databases; uncovered data domains; or organizational constraints prohibiting primary data storage outside institional boundaries. Results To share these potentially dark data in a FAIR way and master these challenges the ELIXIR Germany/de.NBI service Plant Genomic and Phenomics Research Data Repository (PGP) implements a “bring the infrastructure to the data” approach, which allows research data to be kept in place and wrapped in a FAIR-aware software infrastructure. This article presents new features of the e!DAL infrastructure software and the PGP repository as a best practice on how to easily set up FAIR-compliant and intuitive research data services. Furthermore, the integration of the ELIXIR Authentication and Authorization Infrastructure (AAI) and data discovery services are introduced as means to lower technical barriers and to increase the visibility of research data. Conclusion The e!DAL software matured to a powerful and FAIR-compliant infrastructure, while keeping the focus on flexible setup and integration into existing infrastructures and into the daily research process.


Author(s):  
Fabian Cremer ◽  
Silvia Daniel ◽  
Marina Lemaire ◽  
Katrin Moeller ◽  
Matthias Razum ◽  
...  

Neuroforum ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Michael Hanke ◽  
Franco Pestilli ◽  
Adina S. Wagner ◽  
Christopher J. Markiewicz ◽  
Jean-Baptiste Poline ◽  
...  

Abstract Decentralized research data management (dRDM) systems handle digital research objects across participating nodes without critically relying on central services. We present four perspectives in defense of dRDM, illustrating that, in contrast to centralized or federated research data management solutions, a dRDM system based on heterogeneous but interoperable components can offer a sustainable, resilient, inclusive, and adaptive infrastructure for scientific stakeholders: An individual scientist or laboratory, a research institute, a domain data archive or cloud computing platform, and a collaborative multisite consortium. All perspectives share the use of a common, self-contained, portable data structure as an abstraction from current technology and service choices. In conjunction, the four perspectives review how varying requirements of independent scientific stakeholders can be addressed by a scalable, uniform dRDM solution and present a working system as an exemplary implementation.


Sign in / Sign up

Export Citation Format

Share Document