scholarly journals Integrated high-resolution dataset of high intensity Euro-Mediterranean flash floods

2018 ◽  
Author(s):  
William Amponsah ◽  
Pierre-Alain Ayral ◽  
Brice Boudevillain ◽  
Christophe Bouvier ◽  
Isabelle Braud ◽  
...  

Abstract. This paper describes an integrated, high-resolution dataset of hydro-meteorological variables (rainfall and discharge) concerning a number of high-intensity flash floods that occurred in Europe and in the Mediterranean region from 1991 to 2015. This type of dataset is rare in the scientific literature because flash floods are typically poorly observed hydrological extremes. Valuable features of the dataset (hereinafter referred to as EuroMedeFF database) include i) its coverage of varied hydro-climatic regions, ranging from Continental Europe through the Mediterranean to Arid climates, ii) the high space-time resolution radar-rainfall estimates, and iii) the dense spatial sampling of the flood response, by observed hydrographs and/or flood peak estimates from post-flood surveys. Flash floods included in the database are selected based on the limited upstream catchment areas (up to 3000 km2), the limited storm durations (up to 2 days), and the unit peak flood magnitude. The EuroMedeFF database comprises 49 events that occurred in France, Israel, Italy, Romania, Germany, and Slovenia, and constitutes a sample of rainfall and flood discharge extremes in different climates. The dataset may be of help to hydrologists as well as other scientific communities because it offers benchmark data for the identification and analysis of the hydro-meteorological causative processes, evaluation of flash flood hydrological models and for hydro-meteorological forecast systems. The dataset also provides a template for the analysis of the space-time variability of flash flood-triggered rainfall fields and of the effects of their estimation on the flood response modelling. The dataset is made available to the public as a "public dataset" with the following DOI: (https://doi.org/10.6096/mistrals-hymex.1493).

2018 ◽  
Vol 10 (4) ◽  
pp. 1783-1794 ◽  
Author(s):  
William Amponsah ◽  
Pierre-Alain Ayral ◽  
Brice Boudevillain ◽  
Christophe Bouvier ◽  
Isabelle Braud ◽  
...  

Abstract. This paper describes an integrated, high-resolution dataset of hydro-meteorological variables (rainfall and discharge) concerning a number of high-intensity flash floods that occurred in Europe and in the Mediterranean region from 1991 to 2015. This type of dataset is rare in the scientific literature because flash floods are typically poorly observed hydrological extremes. Valuable features of the dataset (hereinafter referred to as the EuroMedeFF database) include (i) its coverage of varied hydro-climatic regions, ranging from Continental Europe through the Mediterranean to Arid climates, (ii) the high space–time resolution radar rainfall estimates, and (iii) the dense spatial sampling of the flood response, by observed hydrographs and/or flood peak estimates from post-flood surveys. Flash floods included in the database are selected based on the limited upstream catchment areas (up to 3000 km2), the limited storm durations (up to 2 days), and the unit peak flood magnitude. The EuroMedeFF database comprises 49 events that occurred in France, Israel, Italy, Romania, Germany and Slovenia, and constitutes a sample of rainfall and flood discharge extremes in different climates. The dataset may be of help to hydrologists as well as other scientific communities because it offers benchmark data for the identification and analysis of the hydro-meteorological causative processes, evaluation of flash flood hydrological models and for hydro-meteorological forecast systems. The dataset also provides a template for the analysis of the space–time variability of flash flood triggering rainfall fields and of the effects of their estimation on the flood response modelling. The dataset is made available to the public with the following DOI: https://doi.org/10.6096/MISTRALS-HyMeX.1493.


2021 ◽  
Author(s):  
Marjanne Zander ◽  
Pety Viguurs ◽  
Frederiek Sperna Weiland ◽  
Albrecht Weerts

<p>Flash Floods are damaging natural hazards which often occur in the European Alps. Precipitation patterns and intensity may change in a future climate affecting their occurrence and magnitude. For impact studies, flash floods can be difficult to simulate due the complex orography and limited extent & duration of the heavy rainfall events which trigger them. The new generation convection-permitting regional climate models improve the intensity and frequency of heavy precipitation (Ban et al., 2021).</p><p>Therefore, this study combines such simulations with high-resolution distributed hydrological modelling to assess changes in flash flood frequency and occurrence over the Alpine terrain. We use the state-of-the-art Unified Model (Berthou et al., 2018) to drive a high-resolution distributed hydrological wflow_sbm model (e.g. Imhoff et al., 2020) covering most of the Alpine mountain range on an hourly resolution. Simulations of the future climate RCP 8.5 for the end-of-century (2096-2105) and current climate (1998-2007) are compared.</p><p>First, the wflow_sbm model was validated by comparing ERA5 driven simulation with streamflow observations (across Rhone, Rhine, Po, Adige and Danube). Second, the wflow_sbm simulation driven by UM simulation of the current climate was compared to a dataset of historical flood occurrences (Paprotny et al., 2018, Earth Syst. Sci. Data) to validate if the model can accurately simulate the location of the flash floods and to determine a suitable threshold for flash flooding. Finally, the future run was used to asses changes in flash flood frequency and occurrence. Results show an increase in flash flood frequency for the Upper Rhine and Adige catchments. For the Rhone the increase was less pronounced. The locations where the flash floods occur did not change much.</p><p>This research is embedded in the EU H2020 project EUCP (EUropean Climate Prediction system) (https://www.eucp-project.eu/), which aims to support climate adaptation and mitigation decisions for the coming decades by developing a regional climate prediction and projection system based on high-resolution climate models for Europe.</p><p> </p><p>N. Ban, E. Brisson, C. Caillaud, E. Coppola, E. Pichelli, S. Sobolowski, …, M.J. Zander (2021): “The first multi-model ensemble of regional climate simulations at the kilometer-scale resolution, Part I: Evaluation of precipitation”, manuscript accepted for publication in Climate Dynamics.</p><p>S. Berthou, E.J. Kendon, S. C. Chan, N. Ban, D. Leutwyler, C. Schär, and G. Fosser, 2018, “Pan-european climate at convection-permitting scale: a model intercomparison study.” Climate Dynamics, pages 1–25, DOI: 10.1007/s00382-018-4114-6</p><p>Imhoff, R.O., W. van Verseveld, B. van Osnabrugge, A.H. Weerts, 2020. “Scaling point-scale pedotransfer functions parameter estimates for seamless large-domain high-resolution distributed hydrological modelling: An example for the Rhine river.” Water Resources Research, 56. Doi: 10.1029/2019WR026807</p><p>Paprotny, D., Morales Napoles, O., & Jonkman, S. N., 2018. "HANZE: a pan-European database of exposure to natural hazards and damaging historical floods since 1870". Earth System Science Data, 10, 565–581, https://doi.org/10.5194/essd-10-565-2018</p>


2021 ◽  
Author(s):  
Paula Lorenzo Sánchez ◽  
Leonardo Aragão

<p>The North Atlantic Oscillation (NAO) has been widely recognized as one of the main patterns of atmospheric variability over the northern hemisphere, helping to understand variations on the North Atlantic Jet (NAJ) position and its influence on storm-tracks, atmospheric blocking and Rossby Wave breaking. Among several relevant teleconnection patterns identified through different timescales, the most prominent ones are found for northern Europe during winter months, when positive (negative) phases of NAO are related to wetter (drier) conditions. Although it is not well defined yet, an opposite connection is observed for the Mediterranean region, where negative NAO values are often associated with high precipitation. Therefore, the main goal of this study is to identify which regions and periods of the year are the most susceptible to abundant NAO-related precipitation throughout the Italian Peninsula. For doing so, the last 42 years period (1979-2020) was analysed using the Fifth Generation ECMWF Atmospheric ReAnalysis of the Global Climate (ERA5). The NAO index was calculated using the Mean Sea Level Pressure (MSLP) extracted from the nearest gridpoints to Reykjavik, Ponta Delgada, Lisbon and Gibraltar, with a time resolution of one hour and horizontal spatial resolution of 0.25ºx0.25º. Both NAO index and MSLP time series were validated for different timescales (hourly, daily, monthly and seasonal) using the Automated Surface Observing System data and the Climatic Research Unit (CRU) high-resolution dataset (based on measured data). High correlations, ranging from 0.92 to 0.98, were found for all stations, timescales and evaluated parameters. To quantify the influence of NAO over the Mediterranean region, the monthly averaged ERA5 ‘total precipitation’ data over the Italian Peninsula [35-48º N; 5-20º E] were used. As expected, the results concerning NAO x Precipitation presented the best correlations when analysed monthly, confirming some of the already known NAO signatures over the Italian Peninsula: higher correlations during winter and over the Tyrrhenian coast, and lower correlations during summer and over the Apennines, the Adriatic Sea and the Ionian Sea. On the other hand, the precipitation over the Alps and the Tunisian coast presented a remarkable signature of positive NAO values that, despite a lower statistical significance (85-90%), is in agreement with recent findings of observational studies. In addition, significant negative correlations were identified for the spring and autumn months over the Tyrrhenian area. Among those, the high correlations found during May are particularly interesting, as they follow the behaviour described in recent studies performed using the same high-resolution dataset (ERA5), which have identified an increased number of cyclones over the Mediterranean during this month. This connection suggests that NAO could also be used to explore the potential penetration of the North Atlantic depressions into the Mediterranean Basin. </p><p>Keywords: NAO; Teleconnections; ERA5; ReAnalysis; Mediterranean; Climatology.</p>


2020 ◽  
Author(s):  
Marc Berenguer ◽  
Shinju Park ◽  
Daniel Sempere-Torres

<p>Radar rainfall estimates and nowcasts have been used in Catalonia (NE Spain) for real-time flash flood hazard nowcasting based on the basin-aggregated rainfall for several years. This approach has been further developed within the European Projects ERICHA (www.ericha.eu) and ANYWHERE (www.anywhere-h2020.eu), where it has been demonstrated to monitor flash floods in real time in several locations and at different spatial scales (from regional to Continental coverage).</p><p>The work summarizes the main results of the recent projects, analysing the performance of the flash flood nowcasting system. The results obtained on recent events  show the main advantages and some of the limitations of the system.</p>


2017 ◽  
Vol 9 (3) ◽  
pp. 621-638 ◽  
Author(s):  
Katerina Papagiannaki ◽  
Vassiliki Kotroni ◽  
Kostas Lagouvardos ◽  
Isabelle Ruin ◽  
Antonis Bezes

Abstract Over the past several decades, flash floods that occurred in Attica, Greece, caused serious property and infrastructure damages, disruptions in economic and social activities, and human fatalities. This paper investigated the link between rainfall and flash flood impact during the catastrophic event that affected Attica on 22 October 2015, while also addressing human risk perception and behavior as a response to flash floods. The methodology included the analysis of the space–time correlation of rainfall with the citizens’ calls to the emergency fire services for help, and the statistical analysis of people’s responses to an online behavioral survey. The results designated critical rainfall thresholds associated with flash flood impact in the four most affected subareas of the Attica region. The impact magnitude was found to be associated with the localized accumulated rainfall. Vulnerability factors, namely, population density, geographical, and environmental features, may have contributed to the differences in the impact magnitudes between the examined subareas. The analysis of the survey’s behavioral responses provided insights into peoples’ risk perception and coping responses relative to the space–time distribution of rainfall. The findings of this study were in agreement with the hypothesis that the more severe the rainfall, the higher peoples’ severity assessment and the intensity of emotional response. Deeper feelings of fear and worry were found to be related to more adjustments to the scheduled activities and travels. Additionally, being alert to the upcoming rainfall risk was found to be related to decreased worry and fear and to fewer changes in scheduled activities.


Author(s):  
Wachirawat Ariyasirichot

The objective of this research is (1) to raise awareness and prepare for flash flooding among people in the Mekong region which promotes inequality reduction from disasters by using Muang Nong Khai District, Nong Khai Province as a model area, and (2) To develop a policy proposal by designing a joint policy for flash flood preparedness in the Mekong region to promote inequality reduction from disasters. This research is action research in conjunction with policy design focusing on brainstorming. Group discussions with in-depth interviews. The research results were found that: [A] People have a basic understanding of (1) the nature of the disaster, and (2) the experience of the flash flood disaster encountered by the WiangKhuk Sub-district people is about remembering the severity Looking at the floods that have been associated, but in terms of preparation, community leaders see together that they want to develop into a system and plan for a joint rehearsal in the future. [B] Flash flood response weaknesses are (1) Weaknesses for early warning, evacuation, and flash flood drills, (2) Weaknesses of flash flood plans for areas that have not yet been formally planned, And (3) weaknesses in communication. [C] The interesting common policy design guidelines that should be developed are (1) Flash flood knowledge development, (2) direction and coordination for emergency operations, (3) agreements that Formal and informal for flash flood response, (4) resource mobilization focused on the certainty of emergency work. [D] The policy recommendations are: (1) Appropriate policy guidelines for flash flood preparedness in the Mekong River Basin should include precautions, evacuation, flash flood drills, and community-level plans to tackle flash floods. (2) The public sector, civil society, and communities should jointly develop policies to prepare for flash floods, that is, to develop flash flood knowledge to keep up with the changing circumstances of the local context. (3) The key policy to deal with flash floods to help reduce inequality is to develop community capacity or community potential. This is a collaboration of community organizations, the government sector, civil society in the area, which together with driving a community-level response plan. [E] The operation recommendations include (1) the community must be the host to invite government organizations such as the Provincial Disaster Prevention and Mitigation and the Mekong Community Organization Council to drive community-level planning. (2) Organizing a network meeting on flash flood response such as communities, Provincial Disaster Prevention and Mitigation Agency, and Mekong Community Organization Council should hold meetings at least twice a year to understand the situation and implement measures to deal with flash floods in a timely manner. (3) Flash flood drills should be conducted at least once a year in order to build mutual learning among communities and networks in flash flood preparedness, it is also an analysis of the weaknesses each year and can be used to develop the capacity and capacity of the community to handle the flash flood in the future.


2013 ◽  
Vol 18 (2) ◽  
pp. 183-193 ◽  
Author(s):  
Michele Tarolli ◽  
Marco Borga ◽  
Davide Zoccatelli ◽  
Christian Bernhofer ◽  
Nadine Jatho ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document