scholarly journals Distribution of mesozooplankton biomass in the global ocean

2012 ◽  
Vol 5 (2) ◽  
pp. 893-919
Author(s):  
R. Moriarty ◽  
T. D. O'Brien

Abstract. Mesozooplankton are cosmopolitan within the sunlit layers of the global ocean. They are important in the classical food web, having a significant feedback to primary production through their consumption of phytoplankton and microzooplankton. They are also the primary contributor to vertical particle flux in the oceans. Through both they affect the biogeochemical cycling of carbon and other nutrients in the oceans. Little, however, is known about their global distribution and biomass. While global maps of mesozooplankton biomass do exist in the literature they are usually in the form of hand-drawn maps and the original data associated with these maps are not readily available. The dataset presented in this synthesis has been in development since the late 1990's, is an integral part of the Coastal & Oceanic Plankton Ecology, Production, & Observation Database (COPEPOD), and is now also part of a wider community effort to provide a global picture of carbon biomass data for key plankton functional types, in particular to support the development of marine ecosystem models. A total of 153 163 biomass values were collected, from a variety of sources, for mesozooplankton. Of those 2% were originally recorded as dry mass, 26% as wet mass, 5% as settled volume, and 68% as displacement volume. Using a variety of non-linear biomass conversions from the literature, the data have been converted from their original units to carbon biomass. Depth-integrated values were then used to calculate mesozooplankton global biomass. Global mesozooplankton biomass, to a depth of 200 m, had a mean of 5.9 μg C l−1, median of 2.7 μg C l−1 and a standard deviation of 10.6 μg C l−1. The global annual average estimate of mesozooplankton, based on the median value, was 0.19 Pg C. Biomass was highest in the Northern Hemisphere, but the general trend shows a slight decrease from polar oceans to temperate regions with values increasing again in the tropics. Gridded dataset http://doi.pangaea.de/10.1594/PANGAEA.785501x.

2013 ◽  
Vol 5 (1) ◽  
pp. 45-55 ◽  
Author(s):  
R. Moriarty ◽  
T. D. O'Brien

Abstract. Mesozooplankton are cosmopolitan within the sunlit layers of the global ocean. They are important in the pelagic food web, having a significant feedback to primary production through their consumption of phytoplankton and microzooplankton. In many regions of the global ocean, they are also the primary contributors to vertical particle flux in the oceans. Through both they affect the biogeochemical cycling of carbon and other nutrients in the oceans. Little, however, is known about their global distribution and biomass. While global maps of mesozooplankton biomass do exist in the literature, they are usually in the form of hand-drawn maps for which the original data associated with these maps are not readily available. The dataset presented in this synthesis has been in development since the late 1990s, is an integral part of the Coastal and Oceanic Plankton Ecology, Production, and Observation Database (COPEPOD), and is now also part of a wider community effort to provide a global picture of carbon biomass data for key plankton functional types, in particular to support the development of marine ecosystem models. A total of 153 163 biomass values were collected, from a variety of sources, for mesozooplankton. Of those 2% were originally recorded as dry mass, 26% as wet mass, 5% as settled volume, and 68% as displacement volume. Using a variety of non-linear biomass conversions from the literature, the data have been converted from their original units to carbon biomass. Depth-integrated values were then used to calculate an estimate of mesozooplankton global biomass. Global epipelagic mesozooplankton biomass, to a depth of 200 m, had a mean of 5.9 μg C L−1, median of 2.7 μg C L−1 and a standard deviation of 10.6 μg C L−1. The global annual average estimate of mesozooplankton in the top 200 m, based on the median value, was 0.19 Pg C. Biomass was highest in the Northern Hemisphere, and there were slight decreases from polar oceans (40–90°) to more temperate regions (15–40°) in both hemispheres. Values in the tropics (15° N–15° S) were intermediate between those at the northern and southern temperate latitudes. Datasets available at doi:10.1594/PANGAEA.785501.


2015 ◽  
Vol 61 ◽  
pp. 103-121 ◽  
Author(s):  
Thomas R. Anderson ◽  
Harry L. Bryden

Professor Michael Fasham played a pioneering role in the development of marine ecosystem models for the study of nutrient and carbon cycling in the ocean. He is particularly celebrated for his famous Fasham–Ducklow–McKelvie model, which was the first of its kind to separate new and regenerated forms of nutrient, as well as including microbial recycling pathways. Fasham's models provided key understanding of the links between primary production, carbon cycling and export (of organic matter from the surface to deep ocean) based on both deep and insightful parameterization inspired by his many collaborations with leading experimental and field biologists of the day, and by his expert use of data for model calibration and validation. He had the ability to see the big picture, linking observation and models to achieve a unified understanding of system dynamics. As well as the direct contributions of his own science, Fasham played a pivotal role in steering the international scientific agenda, notably his leadership of the Joint Global Ocean Flux Study which had the aim of understanding ocean carbon cycling and sinks via the coordination of extensive field programmes, synthesis and modelling. He will be remembered by those who knew him for his openness, enthusiasm and modesty, a man who was fun to know and to work with and who loved the thrill of scientific adventure and discovery.


2021 ◽  
pp. 102659
Author(s):  
Ryan F. Heneghan ◽  
Eric Galbraith ◽  
Julia L. Blanchard ◽  
Cheryl Harrison ◽  
Nicolas Barrier ◽  
...  

2015 ◽  
Vol 12 (11) ◽  
pp. 3301-3320 ◽  
Author(s):  
K. B. Rodgers ◽  
J. Lin ◽  
T. L. Frölicher

Abstract. Marine ecosystems are increasingly stressed by human-induced changes. Marine ecosystem drivers that contribute to stressing ecosystems – including warming, acidification, deoxygenation and perturbations to biological productivity – can co-occur in space and time, but detecting their trends is complicated by the presence of noise associated with natural variability in the climate system. Here we use large initial-condition ensemble simulations with an Earth system model under a historical/RCP8.5 (representative concentration pathway 8.5) scenario over 1950–2100 to consider emergence characteristics for the four individual and combined drivers. Using a 1-standard-deviation (67% confidence) threshold of signal to noise to define emergence with a 30-year trend window, we show that ocean acidification emerges much earlier than other drivers, namely during the 20th century over most of the global ocean. For biological productivity, the anthropogenic signal does not emerge from the noise over most of the global ocean before the end of the 21st century. The early emergence pattern for sea surface temperature in low latitudes is reversed from that of subsurface oxygen inventories, where emergence occurs earlier in the Southern Ocean. For the combined multiple-driver field, 41% of the global ocean exhibits emergence for the 2005–2014 period, and 63% for the 2075–2084 period. The combined multiple-driver field reveals emergence patterns by the end of this century that are relatively high over much of the Southern Ocean, North Pacific, and Atlantic, but relatively low over the tropics and the South Pacific. For the case of two drivers, the tropics including habitats of coral reefs emerges earliest, with this driven by the joint effects of acidification and warming. It is precisely in the regions with pronounced emergence characteristics where marine ecosystems may be expected to be pushed outside of their comfort zone determined by the degree of natural background variability to which they are adapted. The results underscore the importance of sustained multi-decadal observing systems for monitoring multiple ecosystems drivers.


2008 ◽  
Vol 16 (21) ◽  
pp. 16581 ◽  
Author(s):  
Bradley Penta ◽  
Zhongping Lee ◽  
Raphael M. Kudela ◽  
Sherry L. Palacios ◽  
Deric J. Gray ◽  
...  

2015 ◽  
Vol 12 (23) ◽  
pp. 6955-6984 ◽  
Author(s):  
C. Laufkötter ◽  
M. Vogt ◽  
N. Gruber ◽  
M. Aita-Noguchi ◽  
O. Aumont ◽  
...  

Abstract. Past model studies have projected a global decrease in marine net primary production (NPP) over the 21st century, but these studies focused on the multi-model mean rather than on the large inter-model differences. Here, we analyze model-simulated changes in NPP for the 21st century under IPCC's high-emission scenario RCP8.5. We use a suite of nine coupled carbon–climate Earth system models with embedded marine ecosystem models and focus on the spread between the different models and the underlying reasons. Globally, NPP decreases in five out of the nine models over the course of the 21st century, while three show no significant trend and one even simulates an increase. The largest model spread occurs in the low latitudes (between 30° S and 30° N), with individual models simulating relative changes between −25 and +40 %. Of the seven models diagnosing a net decrease in NPP in the low latitudes, only three simulate this to be a consequence of the classical interpretation, i.e., a stronger nutrient limitation due to increased stratification leading to reduced phytoplankton growth. In the other four, warming-induced increases in phytoplankton growth outbalance the stronger nutrient limitation. However, temperature-driven increases in grazing and other loss processes cause a net decrease in phytoplankton biomass and reduce NPP despite higher growth rates. One model projects a strong increase in NPP in the low latitudes, caused by an intensification of the microbial loop, while NPP in the remaining model changes by less than 0.5 %. While models consistently project increases NPP in the Southern Ocean, the regional inter-model range is also very substantial. In most models, this increase in NPP is driven by temperature, but it is also modulated by changes in light, macronutrients and iron as well as grazing. Overall, current projections of future changes in global marine NPP are subject to large uncertainties and necessitate a dedicated and sustained effort to improve the models and the concepts and data that guide their development.


2020 ◽  
Author(s):  
Félix Pellerin ◽  
Philipp Porada ◽  
Inga Hense

Abstract. Terrestrial and marine ecosystems interact with other Earth system components through different biosphere-climate feedbacks that are very similar among ecosystem types. Despite these similarities, terrestrial and marine systems are often treated relatively separately in Earth System Models (ESM). In these ESM, the ecosystems are represented by a set of biological processes that are able to influence the climate system by affecting the chemical and physical properties of the environment. While most of the climate-relevant processes are shared between ecosystem types, model representations of terrestrial and marine ecosystems often differ. This raises the question whether inconsistencies between terrestrial and marine ecosystem models exist and potentially skew our perception of the relative influence of each ecosystem on climate. Here we compared the terrestrial and marine modules of 17 Earth System Models in order to identify inconsistencies between the two ecosystem types. We sorted out the biological processes included in ESM regarding their influence on climate into three types of biosphere-climate feedbacks (i.e. the biogeochemical pumps, the biogeophysical mechanisms and the gas and particle shuttles), and critically compare their representation in the different ecosystem modules. Overall, we found multiple evidences of unjustified differences in process representations between terrestrial and marine ecosystem models within ESM. These inconsistencies may lead to wrong predictions about the role of biosphere in the climate system. We believe that the present comparison can be used by the Earth system modeling community to increase consistency between ecosystem models. We further call for the development of a common framework allowing the uniform representation of climate-relevant processes in ecosystem modules of ESM.


2003 ◽  
Vol 253 ◽  
pp. 1-16 ◽  
Author(s):  
EA Fulton ◽  
ADM Smith ◽  
CR Johnson

Sign in / Sign up

Export Citation Format

Share Document