scholarly journals Multiple knickpoints in an alluvial river generated by a single instantaneous drop in base level: experimental investigation

2014 ◽  
Vol 2 (1) ◽  
pp. 271-278 ◽  
Author(s):  
A. Cantelli ◽  
T. Muto

Abstract. Knickpoints often form in bedrock rivers in response to base-level lowering. These knickpoints can migrate upstream without dissipating. In the case of alluvial rivers, an impulsive lowering of base level due to, for example, a fault associated with an earthquake or dam removal commonly produces smooth, upstream-progressing degradation; the knickpoint associated with suddenly lowered base level quickly dissipates. Here, however, we use experiments to demonstrate that under conditions of Froude-supercritical flow over an alluvial bed, an instantaneous drop in base level can lead to the formation of upstream-migrating knickpoints that do not dissipate. The base-level fall can generate a single knickpoint, or multiple knickpoints. Multiple knickpoints take the form of cyclic steps, that is, trains of upstream-migrating bedforms, each bounded by a hydraulic jump upstream and downstream. In our experiments, trains of knickpoints were transient, eventually migrating out of the alluvial reach as the bed evolved to a new equilibrium state regulated with lowered base level. Thus the allogenic perturbation of base-level fall can trigger the autogenic generation of multiple knickpoints which are sustained until the alluvial reach recovers a graded state.

2013 ◽  
Vol 1 (1) ◽  
pp. 483-501
Author(s):  
A. Cantelli ◽  
T. Muto

Abstract. Knickpoints often form in bedrock rivers in response to base level lowering. These knickpoints can migrate upstream without dissipating. In the case of alluvial rivers, an impulsive lowering of base level due to, for example, a fault associated with an earthquake or dam removal commonly produces smooth, upstream-progressing degradation. The knickpoint associated with suddenly lowered base level quickly dissipates. Here, however, we use experiments to demonstrate that, under conditions of Froude-supercritical flow over an alluvial bed, suddenly lowered base level can lead to the formation of upstream-migrating knickpoints that do not dissipate. The base level fall can generate a single knickpoint or multiple knickpoints. Multiple knickpoints take the form of cyclic steps (i.e., trains of upstream-migrating bedforms, each bounded by a hydraulic jump upstream and downstream). In our experiments, trains of knickpoints were transient, eventually migrating out of the alluvial reach as the bed evolved to a new equilibrium state regulated with lowered base level. Thus the allogenic perturbation of lowered base level can trigger the autogenic generation of multiple knickpoints, which are sustained until the alluvial reach recovers a graded state.


Geomorphology ◽  
2007 ◽  
Vol 92 (1-2) ◽  
pp. 60-75 ◽  
Author(s):  
Dan Bowman ◽  
Yonit Shachnovich-Firtel ◽  
Shlomo Devora

2020 ◽  
Vol 10 (21) ◽  
pp. 7697
Author(s):  
Dario Gioia ◽  
Marcello Schiattarella

Simulation scenarios of sediment flux variation and topographic changes due to dam removal have been investigated in a reservoir catchment of the axial zone of southern Italy through the application of a landscape evolution model (i.e.,: the Caesar–Lisflood landscape evolution models, LEM). LEM simulation highlights that the abrupt change in base level due to dam removal induces a significant increase in erosion ability of main channels and a strong incision of the reservoir infill. Analysis of the sediment dynamics resulting from the dam removal highlights a significant increase of the total eroded volumes in the post dam scenario of a factor higher than 4. Model results also predict a strong modification of the longitudinal profile of main channels, which promoted fluvial incision upstream and downstream of the former reservoir area. Such a geomorphic response is in agreement with previous analysis of the fluvial system short-term response induced by base-level lowering, thus demonstrating the reliability of LEM-based analysis for solving open problems in applied geomorphology such as perturbations and short-term landscape modification natural processes or human impact.


2021 ◽  
Author(s):  
James Buckley ◽  
Rebecca Hodge ◽  
Louise Slater

<p>Active incision of bedrock rivers exerts a vital control on landscape evolution in upland areas. Previous research found that bedrock rivers were typically steeper and sometimes narrower than alluvial rivers. However, most of the literature on partially-exposed bedrock rivers has employed small samples mostly from mountainous regions, so their geomorphological properties remain poorly understood. In contrast with the existing literature, a large-sample analysis of bedrock river channel properties would allow the controls on bedrock river width and slope to be unpicked and reveal whether or not the existing literature is biased towards pristine, mountainous bedrock rivers. Overall, such an analysis could improve the reliability of upland landscape evolution models.</p><p>Here we present an analysis of 1,924 river sites from the EPA National Rivers and Streams Assessment to assess the geomorphological differences between bedrock and alluvial rivers. The influences of lithology and uplift on bedrock channel properties are examined using external datasets. We find bedrock rivers to be significantly steeper and wider than alluvial rivers. Sedimentary bedrock rivers were seen to be significantly wider than igneous/ metamorphic bedrock rivers, consistent with findings from Ferguson et al. (2017). We estimated shear stress and critical shear stress for each river site and assessed correlation with bedrock exposure. We found that exposed bedrock could not always be explained by local sediment transport exceeding local sediment supply, indicating that bedrock exposure may be controlled by other factors in some bedrock rivers. Currently, uplift data are being compiled for further analysis.</p>


Sign in / Sign up

Export Citation Format

Share Document