scholarly journals TephraNZ: a major and trace element reference dataset for prominent Quaternary rhyolitic tephras in New Zealand and implications for correlation

2020 ◽  
Author(s):  
Jenni L. Hopkins ◽  
Janine E. Bidmead ◽  
David J. Lowe ◽  
Richard J. Wysoczanski ◽  
Bradley J. Pillans ◽  
...  

Abstract. Although analyses of tephra-derived glass shards have been undertaken in New Zealand for nearly four decades (pioneered by Paul Froggatt), our study is the first to systematically develop a formal, comprehensive, open access, reference dataset of glass-shard compositions for New Zealand tephras. These data will provide an important reference tool for future studies to identify and correlate tephra deposits and for associated petrological and magma-related studies within New Zealand and beyond. Here we present the foundation dataset for TephraNZ, an open access reference dataset for selected tephra deposits in New Zealand. Prominent, rhyolitic, tephra deposits from the Quaternary were identified, with sample collection targeting original type sites or reference locations where the tephra's identification is unequivocally known based on independent dating or mineralogical techniques. Glass shards were extracted from the tephra deposits and major and trace element geochemical compositions were determined. We discuss in detail the data reduction process used to obtain the results and propose that future studies follow a similar protocol in order to gain comparable data. The dataset contains analyses of twenty-three proximal and twenty-seven distal tephra samples characterising 45 eruptive episodes ranging from Kaharoa (636 ± 12 cal. yrs BP) to the Hikuroa Pumice member (2.0 ± 0.6 Ma) from six or more caldera sources, most from the central Taupō Volcanic Zone. We report 1385 major element analyses obtained by electron microprobe (EMPA), and 590 trace element analyses obtained by laser ablation (LA)-ICP-MS, on individual glass shards. Using PCA, Euclidean similarity coefficients, and geochemical investigation, we show that chemical compositions of glass shards from individual eruptions are commonly distinguished by major elements, especially CaO, TiO2, K2O, FeOt (Na2O+ K2O and SiO2/K2O), but not always. For those tephras with similar glass major-element signatures, some can be distinguished using trace elements (e.g. HFSEs: Zr, Hf, Nb; LILE: Ba, Rb; REE: Eu, Tm, Dy, Y, Tb, Gd, Er, Ho, Yb, Sm), and trace element ratios (e.g. LILE / HFSE: Ba / Th, Ba / Zr, Rb / Zr; HFSE / HREE: Zr / Y, Zr / Yb, Hf / Y; LREE / HREE: La / Yb, Ce / Yb). Geochemistry alone cannot be used to distinguish between glass shards from the following tephra groups: Taupō (Unit Y in the post-Ōruanui eruption sequence of Taupō volcano) and Waimihia (Unit S); Poronui (Unit C) and Karapiti (Unit B); Rotorua and Rerewhakaaitu; and Kawakawa/Ōruanui, Okaia, and Unit L (of the Mangaone subgroup eruption sequence). Other characteristics can be used to separate and distinguish all of these otherwise-similar eruptives except Poronui and Karapiti. Bimodality caused by K2O variability is newly identified in Poihipi and Tahuna tephras. Using glass shard compositions, tephra sourced from Taupō Volcanic Centre (TVC) and Mangakino Volcanic Centre (MgVC) can be separated using bivariate plots of SiO2/K2O vs. Na2O+K2O. Glass shards from tephras derived from Kapenga Volcanic Centre, Rotorua Volcanic Centre, and Whakamaru Volcanic Centre have similar major- and trace-element chemical compositions to those from the MgVC, but can overlap with glass analyses from tephras from Taupō and Okataina volcanic centres. Specific trace elements and trace element ratios have lower variability than the heterogeneous major element and bimodal signatures, making them easier to geochemically fingerprint.

Geochronology ◽  
2021 ◽  
Vol 3 (2) ◽  
pp. 465-504
Author(s):  
Jenni L. Hopkins ◽  
Janine E. Bidmead ◽  
David J. Lowe ◽  
Richard J. Wysoczanski ◽  
Bradley J. Pillans ◽  
...  

Abstract. Although analyses of tephra-derived glass shards have been undertaken in New Zealand for nearly four decades (pioneered by Paul Froggatt), our study is the first to systematically develop a formal, comprehensive, open-access reference dataset of glass-shard compositions for New Zealand tephras. These data will provide an important reference tool for future studies to identify and correlate tephra deposits and for associated petrological and magma-related studies within New Zealand and beyond. Here we present the foundation dataset for TephraNZ, an open-access reference dataset for selected tephra deposits in New Zealand. Prominent, rhyolitic, tephra deposits from the Quaternary were identified, with sample collection targeting original type sites or reference locations where the tephra's identification is unequivocally known based on independent dating and/or mineralogical techniques. Glass shards were extracted from the tephra deposits, and major- and trace-element geochemical compositions were determined. We discuss in detail the data reduction process used to obtain the results and propose that future studies follow a similar protocol in order to gain comparable data. The dataset contains analyses of glass shards from 23 proximal and 27 distal tephra samples characterising 45 eruptive episodes ranging from Kaharoa (636 ± 12 cal yr BP) to the Hikuroa Pumice member (2.0 ± 0.6 Ma) from six or more caldera sources, most from the central Taupō Volcanic Zone. We report 1385 major-element analyses obtained by electron microprobe (EMPA), and 590 trace-element analyses obtained by laser ablation (LA)-ICP-MS, on individual glass shards. Using principal component analysis (PCA), Euclidean similarity coefficients, and geochemical investigation, we show that chemical compositions of glass shards from individual eruptions are commonly distinguished by major elements, especially CaO, TiO2, K2O, and FeOtt (Na2O+K2O and SiO2/K2O), but not always. For those tephras with similar glass major-element signatures, some can be distinguished using trace elements (e.g. HFSEs: Zr, Hf, Nb; LILE: Ba, Rb; REE: Eu, Tm, Dy, Y, Tb, Gd, Er, Ho, Yb, Sm) and trace-element ratios (e.g. LILE/HFSE: Ba/Th, Ba/Zr, Rb/Zr; HFSE/HREE: Zr/Y, Zr/Yb, Hf/Y; LREE/HREE: La/Yb, Ce/Yb). Geochemistry alone cannot be used to distinguish between glass shards from the following tephra groups: Taupō (Unit Y in the post-Ōruanui eruption sequence of Taupō volcano) and Waimihia (Unit S); Poronui (Unit C) and Karapiti (Unit B); Rotorua and Rerewhakaaitu; and Kawakawa/Ōruanui, and Okaia. Other characteristics, including stratigraphic relationships and age, can be used to separate and distinguish all of these otherwise-similar tephra deposits except Poronui and Karapiti. Bimodality caused by K2O variability is newly identified in Poihipi and Tahuna tephras. Using glass-shard compositions, tephra sourced from Taupō Volcanic Centre (TVC) and Mangakino Volcanic Centre (MgVC) can be separated using bivariate plots of SiO2/K2O vs. Na2O+K2O. Glass shards from tephras derived from Kapenga Volcanic Centre, Rotorua Volcanic Centre, and Whakamaru Volcanic Centre have similar major- and trace-element chemical compositions to those from the MgVC, but they can overlap with glass analyses from tephras from Taupō and Okataina volcanic centres. Specific trace elements and trace-element ratios have lower variability than the heterogeneous major-element and bimodal signatures, making them easier to fingerprint geochemically.


2021 ◽  
Author(s):  
◽  
Matthew Thomas Stevens

<p>The Coromandel Volcanic Zone (CVZ) was the longest-lived area of volcanism in New Zealand hosting the commencement of large explosive rhyolitic and ignimbrite forming eruptions. The NW trending Coromandel Peninsula is the subaerial remnant of the Miocene-Pliocene CVZ, which is regarded as a tectonic precursor to the Taupo Volcanic Zone (TVZ), currently the most dynamic and voluminous rhyolitic volcanic centre on Earth. This study presents new single glass shard major and trace element geochemical analyses for 72 high-silica volcanic tephra layers recovered from well-dated deep-sea sediments of the SW Pacific Ocean by the Ocean Drilling Program (ODP) Leg 181. ODP Site 1124, ~720 km south and east from the CVZ, penetrated sediments of the Rekohu Drift yielding an unprecedented record of major explosive volcanic eruptions owing to the favourable location and preservation characteristics at this site. This record extends onshore eruptive sequences of CVZ explosive volcanism that are obscured by poor exposure, alteration, and erosion and burial by younger volcanic deposits. Tephra layers recovered from Site 1124 are well-dated through a combination of biostratigraphic and palaeomagnetic methods allowing the temporal geochemical evolution of the CVZ to be reconstructed in relation to changes in the petrogenesis of CVZ arc magmas from ~ 10 to 2 Ma. This thesis establishes major and trace element geochemical "fingerprints" for all Site 1124-C tephras using well-established (wavelength dispersive electron probe microanalysis) and new (laser ablation inductively coupled plasma mass spectrometry) in situ single glass shard microanalytical techniques. Trace element analysis of Site 1124-C glass shards (as small as 20 um) demonstrate that trace element signatures offer a more specific, unequivocal characterisation for distinguishing (and potentially correlating) between tephras with nearly identical major element compositions. The Site 1124-C core contains 72 unaltered Miocene-Pliocene volcanic glass-shard-bearing laminae > 1 cm thick that correspond to 83 or 84 geochemical eruptive units. Revised eruptive frequencies based on the number of geochemical eruptive units identified represent at least one eruption every 99 kyr for the late Miocene and one per 74 kyr for the Pliocene. The frequency of tephra deposition throughout the history of the CVZ has not been constant, rather reflecting pulses of major explosive eruptions resulting in closely clustered groups of tephra separated by periods of reduced activity, relative volcanic quiescence or non-tephra deposition. As more regular activity became prevalent in the Pliocene, it was accompanied by more silicic magma compositions. Rhyolitic volcanic glass shards are characterised by predominantly calc-alkaline and minor high-K enriched major element compositions. Major element compositional variability of the tephras deposited between 10 Ma and 2 Ma reveals magma batches with pre-eruptive compositional gradients implying a broad control by fractional crystallisation. Trace element characterisation of glass shards reveals the role of magmatic processes that are not readily apparent in the relatively homogeneous major element compositions. Multi-element diagrams show prominent negative Sr and Ti anomalies against primitive mantle likely caused by various degrees of plagioclase and titanomagnetite fractional crystallisation in shallow magma chambers. Relative Nb depletion, characteristic of arc volcanism, is moderate in CVZ tephras. HFSEs (e.g. Nb, Zr, Ti) and HREEs (e.g. Yb, Lu) remain immobile during slab fluid flux suggesting they are derived from the mantle wedge. LILE (e.g. Rb, Cs, Ba, Sr) and LREE (e.g. La, Ce) enrichments are consistent with slab fluid contribution. B/La and Li/Y ratios can be used as a proxy for the flux of subducting material to the mantle wedge, they suggest there is a strong influence from this component in the generation of CVZ arc magmas, potentially inducing melting. CVZ tephra show long-term coherent variability in trace element geochemistry. Post ~ 4 Ma tephras display a more consistent, less variable, chemical fingerprint that persists up to and across the CVZ/TVZ transition at ~ 2 Ma. Initiation of TVZ volcanism may have occurred earlier than is presently considered, or CVZ to TVZ volcanism may have occurred without significant changes in magma generation processes.</p>


2021 ◽  
Author(s):  
◽  
Matthew Thomas Stevens

<p>The Coromandel Volcanic Zone (CVZ) was the longest-lived area of volcanism in New Zealand hosting the commencement of large explosive rhyolitic and ignimbrite forming eruptions. The NW trending Coromandel Peninsula is the subaerial remnant of the Miocene-Pliocene CVZ, which is regarded as a tectonic precursor to the Taupo Volcanic Zone (TVZ), currently the most dynamic and voluminous rhyolitic volcanic centre on Earth. This study presents new single glass shard major and trace element geochemical analyses for 72 high-silica volcanic tephra layers recovered from well-dated deep-sea sediments of the SW Pacific Ocean by the Ocean Drilling Program (ODP) Leg 181. ODP Site 1124, ~720 km south and east from the CVZ, penetrated sediments of the Rekohu Drift yielding an unprecedented record of major explosive volcanic eruptions owing to the favourable location and preservation characteristics at this site. This record extends onshore eruptive sequences of CVZ explosive volcanism that are obscured by poor exposure, alteration, and erosion and burial by younger volcanic deposits. Tephra layers recovered from Site 1124 are well-dated through a combination of biostratigraphic and palaeomagnetic methods allowing the temporal geochemical evolution of the CVZ to be reconstructed in relation to changes in the petrogenesis of CVZ arc magmas from ~ 10 to 2 Ma. This thesis establishes major and trace element geochemical "fingerprints" for all Site 1124-C tephras using well-established (wavelength dispersive electron probe microanalysis) and new (laser ablation inductively coupled plasma mass spectrometry) in situ single glass shard microanalytical techniques. Trace element analysis of Site 1124-C glass shards (as small as 20 um) demonstrate that trace element signatures offer a more specific, unequivocal characterisation for distinguishing (and potentially correlating) between tephras with nearly identical major element compositions. The Site 1124-C core contains 72 unaltered Miocene-Pliocene volcanic glass-shard-bearing laminae > 1 cm thick that correspond to 83 or 84 geochemical eruptive units. Revised eruptive frequencies based on the number of geochemical eruptive units identified represent at least one eruption every 99 kyr for the late Miocene and one per 74 kyr for the Pliocene. The frequency of tephra deposition throughout the history of the CVZ has not been constant, rather reflecting pulses of major explosive eruptions resulting in closely clustered groups of tephra separated by periods of reduced activity, relative volcanic quiescence or non-tephra deposition. As more regular activity became prevalent in the Pliocene, it was accompanied by more silicic magma compositions. Rhyolitic volcanic glass shards are characterised by predominantly calc-alkaline and minor high-K enriched major element compositions. Major element compositional variability of the tephras deposited between 10 Ma and 2 Ma reveals magma batches with pre-eruptive compositional gradients implying a broad control by fractional crystallisation. Trace element characterisation of glass shards reveals the role of magmatic processes that are not readily apparent in the relatively homogeneous major element compositions. Multi-element diagrams show prominent negative Sr and Ti anomalies against primitive mantle likely caused by various degrees of plagioclase and titanomagnetite fractional crystallisation in shallow magma chambers. Relative Nb depletion, characteristic of arc volcanism, is moderate in CVZ tephras. HFSEs (e.g. Nb, Zr, Ti) and HREEs (e.g. Yb, Lu) remain immobile during slab fluid flux suggesting they are derived from the mantle wedge. LILE (e.g. Rb, Cs, Ba, Sr) and LREE (e.g. La, Ce) enrichments are consistent with slab fluid contribution. B/La and Li/Y ratios can be used as a proxy for the flux of subducting material to the mantle wedge, they suggest there is a strong influence from this component in the generation of CVZ arc magmas, potentially inducing melting. CVZ tephra show long-term coherent variability in trace element geochemistry. Post ~ 4 Ma tephras display a more consistent, less variable, chemical fingerprint that persists up to and across the CVZ/TVZ transition at ~ 2 Ma. Initiation of TVZ volcanism may have occurred earlier than is presently considered, or CVZ to TVZ volcanism may have occurred without significant changes in magma generation processes.</p>


Author(s):  
Jenni L. Hopkins ◽  
Janine E. Bidmead ◽  
David J. Lowe ◽  
Richard J. Wysoczanski ◽  
Bradley J. Pillans ◽  
...  

1988 ◽  
Vol 30 (3) ◽  
pp. 270-283 ◽  
Author(s):  
Stephen Stokes ◽  
David J. Lowe

The microprobe-determined glass shard major element chemistry of tephras derived from five North Island, New Zealand volcanoes (Mayor Island, Okataina, Taupo, Tongariro, and Mount Egmont) and younger than ca. 20,000 yr B.P. was subjected to discriminant function analysis. Four separate approaches were adopted to test the match of the tephras with their known sources: (1) an analysis of raw microprobe data; (2) an analysis of normalized data; (3) an analysis of the data transformed by calculating the log10 of oxide scores divided (arbitrarily) by the chlorine content; and (4) a repeat of (3) with multivariate outlier scores, as determined by principal components analysis, deleted. All yielded excellent classification functions (efficiencies of 91–100%), with the eruptives associated with each of the five volcanoes being chemically distinct from one another. In each approach, the first two canonical discriminant functions accounted for >90% of the variation between groups. The removal of multivariate outliers from the data set had only minor effects on the performance of the discriminant function procedures. Separate discriminant function analysis of the relatively alike Taupo and Okataina eruptives gave a greater degree of multivariate separation. The numerical classifications generated should enable unidentified tephras erupted since ca. 20,000 yr B.P. from the five volcanoes to be provisionally matched with their sources.


2007 ◽  
Vol 22 (7) ◽  
pp. 721-736 ◽  
Author(s):  
Nicholas J. G. Pearce ◽  
Joanna S. Denton ◽  
William T. Perkins ◽  
John A. Westgate ◽  
Brent V. Alloway

Sign in / Sign up

Export Citation Format

Share Document