scholarly journals Supplementary material to "Assessing methane emissions for northern peatlands in ORCHIDEE-PEAT revision 7020"

Author(s):  
Elodie Salmon ◽  
Fabrice Jégou ◽  
Bertrand Guenet ◽  
Line Jourdain ◽  
Chunjing Qiu ◽  
...  
2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Maria Strack ◽  
Shari Hayne ◽  
Julie Lovitt ◽  
Gregory J. McDermid ◽  
Mir Mustafizur Rahman ◽  
...  

2021 ◽  
Author(s):  
Elodie Salmon ◽  
Fabrice Jégou ◽  
Bertrand Guenet ◽  
Line Jourdain ◽  
Chunjing Qiu ◽  
...  

Abstract. In the global methane budget, the largest natural source is attributed to wetlands that encompass all ecosystems composed of waterlogged or inundated ground, capable of methane production. Among them, northern peatlands that store large amounts of soil organic carbon have been functioning, since the end of the last glaciation period, as long-term sources of methane (CH4) and are one of the most significant methane sources among wetlands. To reduce global methane budget uncertainties, it is of significance to understand processes driving methane production and fluxes in northern peatlands. A methane model that features methane production and transport by plants, ebullition process and diffusion in soil, oxidation to CO2 and CH4 fluxes to the atmosphere has been embedded in the ORCHIDEE-PEAT land surface model which includes an explicit representation of northern peatlands. This model, ORCHIDEE-PCH4 was calibrated and evaluated on 14 peatland sites distributed on both Eurasian and American continents in the northern boreal and temperate regions. Data assimilation approaches were employed to optimized parameters at each site and at all sites simultaneously. Results show that, in ORCHIDEE-PCH4, methanogenesis is sensitive to temperature and substrate availability over the top 75 cm of soil depth. Methane emissions estimated using single site optimization (SSO) of model parameters are underestimated by 9 g CH4 m−2 year−1 on average (i.e. 50 % higher than the site average of yearly methane emissions). While using the multi-sites optimization (MSO), methane emissions are overestimated by 5 g CH4 m−2 year−1 on average across all investigated sites (i.e. 37 % lower than the site average of yearly methane emissions).


2018 ◽  
Author(s):  
Wenqing Shi ◽  
Qiuwen Chen ◽  
Jianyun Zhang ◽  
Cheng Chen ◽  
Yuchen Chen ◽  
...  

2017 ◽  
Author(s):  
Karel Castro-Morales ◽  
Thomas Kleinen ◽  
Sonja Kaiser ◽  
Sönke Zaehle ◽  
Fanny Kittler ◽  
...  

2016 ◽  
Author(s):  
Sven Krautwurst ◽  
Konstantin Gerilowski ◽  
Haflidi H. Jonsson ◽  
David R. Thompson ◽  
Richard W. Kolyer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document