At-site and regional frequency analysis of extreme precipitation
from radar-based estimates
Abstract. In Belgium, only rain gauge time-series have been used so far to study extreme precipitation at a given location. In this paper, the potential of a 12-year quantitative precipitation estimation (QPE) from a single weather radar is evaluated. For the period 2005–2016, independent sliding 1 h and 24 h rainfall extremes from automatic rain gauges and collocated radar estimates are compared. The extremes are fitted to the exponential distribution using regression in QQ-plots with a threshold rank which minimises the mean squared error. A basic radar product used as reference exhibits unrealistic high extremes and is not suitable for extreme value analysis. For 24 h rainfall extremes, which occur partly in winter, the radar-based QPE needs a bias correction. A few missing events are caused by the wind drift of convective cells and strong radar signal attenuation. Differences between radar and gauge values are caused by spatial and temporal sampling, gauge rainfall underestimations and radar errors due to the relation between reflectivity and rain rate. Nonetheless the fit to the QPE data is within the confidence interval of the gauge fit, which remains large due to the short study period. A regional frequency analysis is performed on radar data within 20 km of the locations of 4 rain gauges with records from 1965 to 2008. Assuming that the extremes are correlated within the region, the fit to the two closest rain gauge data is within the confidence interval of the radar fit, which is small due to the sample size. In Brussels, the extremes on the period 1965–2008 from a rain gauge are significantly lower than the extremes from an automatic gauge and the radar on the period 2005–2016. For 1 h duration, the location parameter varies slightly with topography and the scale parameter exhibits some variations from region to region. The radar-based extreme value analysis can be extended to other durations.