An integrated model for the assessment of global water resources – Part 2: Anthropogenic activities modules and assessments
Abstract. To assess global water resources from the perspective of subannual variation in water resources and water use, an integrated water resources model was developed. In a companion report, we presented the global meteorological forcing input used to drive the model and two natural hydrological cycle modules, namely, the land surface hydrology module and the river routing module. Here, we present the remaining four modules, which represent anthropogenic activities: a crop growth module, a reservoir operation module, an environmental flow requirement module, and an anthropogenic withdrawal module. In addition, we discuss the results of a global water resources assessment using the integrated model. The crop growth module is a relatively simple model based on heat unit theory and potential biomass and harvest index concepts. The performance of the crop growth module was examined extensively because agricultural water comprises approximately 70% of total water withdrawal in the world. The estimated crop calendar showed good agreement with earlier reports for wheat, maize, and rice in major countries of production. The estimated irrigation water withdrawal also showed fair agreement with country statistics, but tended to underestimate countries in the Asian monsoon region. In the reservoir operation module, 452 major reservoirs with more than 1 km³ each of storage capacity store and release water according to their own rules of operation. Operating rules were determined for each reservoir using an algorithm that used currently available global data such as reservoir storage capacity, intended purposes, simulated inflow, and water demand in the lower reaches. The environmental flow requirement module was newly developed based on case studies from around the world. The integrated model closes both energy and water balances on land surfaces. Global water resources were assessed on a subannual basis using a newly devised index that locates water-stressed regions that were undetected in earlier studies. These regions, which are indicated by a gap in the subannual distribution of water resources and water use, include the Sahel, the Asian monsoon region, and southern Africa. The integrated model is applicable to assess various global environmental projections such as climate change.