scholarly journals APPLICATION OF MLS DATA TO THE ASSESSMENT OF SAFETY-RELATED FEATURES IN THE SURROUNDING AREA OF AUTOMATICALLY DETECTED PEDESTRIAN CROSSINGS

Author(s):  
M. Soilán ◽  
B. Riveiro ◽  
A. Sánchez-Rodríguez ◽  
L. M. González-deSantos

During the last few years, there has been a huge methodological development regarding the automatic processing of 3D point cloud data acquired by both terrestrial and aerial mobile mapping systems, motivated by the improvement of surveying technologies and hardware performance. This paper presents a methodology that, in a first place, extracts geometric and semantic information regarding the road markings within the surveyed area from Mobile Laser Scanning (MLS) data, and then employs it to isolate street areas where pedestrian crossings are found and, therefore, pedestrians are more likely to cross the road. Then, different safety-related features can be extracted in order to offer information about the adequacy of the pedestrian crossing regarding its safety, which can be displayed in a Geographical Information System (GIS) layer. These features are defined in four different processing modules: Accessibility analysis, traffic lights classification, traffic signs classification, and visibility analysis. The validation of the proposed methodology has been carried out in two different cities in the northwest of Spain, obtaining both quantitative and qualitative results for pedestrian crossing classification and for each processing module of the safety assessment on pedestrian crossing environments.

Author(s):  
M. Soilán ◽  
B. Riveiro ◽  
J. Martínez-Sánchez ◽  
P. Arias

The periodic inspection of certain infrastructure features plays a key role for road network safety and preservation, and for developing optimal maintenance planning that minimize the life-cycle cost of the inspected features. Mobile Mapping Systems (MMS) use laser scanner technology in order to collect dense and precise three-dimensional point clouds that gather both geometric and radiometric information of the road network. Furthermore, time-stamped RGB imagery that is synchronized with the MMS trajectory is also available. In this paper a methodology for the automatic detection and classification of road signs from point cloud and imagery data provided by a LYNX Mobile Mapper System is presented. First, road signs are detected in the point cloud. Subsequently, the inventory is enriched with geometrical and contextual data such as orientation or distance to the trajectory. Finally, semantic content is given to the detected road signs. As point cloud resolution is insufficient, RGB imagery is used projecting the 3D points in the corresponding images and analysing the RGB data within the bounding box defined by the projected points. The methodology was tested in urban and road environments in Spain, obtaining global recall results greater than 95%, and F-score greater than 90%. In this way, inventory data is obtained in a fast, reliable manner, and it can be applied to improve the maintenance planning of the road network, or to feed a Spatial Information System (SIS), thus, road sign information can be available to be used in a Smart City context.


Author(s):  
Radhika Ravi ◽  
Ayman Habib ◽  
Darcy Bullock

Pavement distress or pothole mapping is important to public agencies responsible for maintaining roadways. The efficient capture of 3D point cloud data using mapping systems equipped with LiDAR eliminates the time-consuming and labor-intensive manual classification and quantity estimates. This paper proposes a methodology to map potholes along the road surface using ultra-high accuracy LiDAR units onboard a wheel-based mobile mapping system. LiDAR point clouds are processed to detect and report the location and severity of potholes by identifying the below-road 3D points pertaining to potholes, along with their depths. The surface area and volume of each detected pothole is also estimated along with the volume of its minimum bounding box to serve as an aide to choose the ideal method of repair as well as to estimate the cost of repair. The proposed approach was tested on a 10 mi-long segment on a U.S. Highway and it is observed to accurately detect potholes with varying severity and different causes. A sample of potholes detected in a 1 mi segment has been reported in the experimental results of this paper. The point clouds generated using the system are observed to have a single-track relative accuracy of less than ±1 cm and a multi-track relative accuracy of ±1–2 cm, which has been verified through comparing point clouds captured by different sensors from different tracks.


Author(s):  
Martin Mokroš ◽  
Tomáš Mikita ◽  
Arunima Singh ◽  
Julián Tomaštík ◽  
Juliána Chudá ◽  
...  

Author(s):  
M. Soilán ◽  
B. Riveiro ◽  
J. Martínez-Sánchez ◽  
P. Arias

The periodic inspection of certain infrastructure features plays a key role for road network safety and preservation, and for developing optimal maintenance planning that minimize the life-cycle cost of the inspected features. Mobile Mapping Systems (MMS) use laser scanner technology in order to collect dense and precise three-dimensional point clouds that gather both geometric and radiometric information of the road network. Furthermore, time-stamped RGB imagery that is synchronized with the MMS trajectory is also available. In this paper a methodology for the automatic detection and classification of road signs from point cloud and imagery data provided by a LYNX Mobile Mapper System is presented. First, road signs are detected in the point cloud. Subsequently, the inventory is enriched with geometrical and contextual data such as orientation or distance to the trajectory. Finally, semantic content is given to the detected road signs. As point cloud resolution is insufficient, RGB imagery is used projecting the 3D points in the corresponding images and analysing the RGB data within the bounding box defined by the projected points. The methodology was tested in urban and road environments in Spain, obtaining global recall results greater than 95%, and F-score greater than 90%. In this way, inventory data is obtained in a fast, reliable manner, and it can be applied to improve the maintenance planning of the road network, or to feed a Spatial Information System (SIS), thus, road sign information can be available to be used in a Smart City context.


Author(s):  
H. Salgues ◽  
H. Macher ◽  
T. Landes

Abstract. With their high recording rate of hundreds of thousands of points acquired per second, speed of execution and a remote acquisition mode, SLAM based mobile mapping systems (MMS) are a very powerful solution for capturing 3D point clouds in real time, simply by walking in the area of interest. Regarding indoor surveys, these MMS have been integrated in handheld or backpack solutions and become fast scanning sensors. Despite their advantages, the geometric accuracy of 3D point clouds guaranteed with these sensors is lower than the one reachable with static TLS. In this paper the effectiveness of two recent mobile mapping systems namely the GeoSLAM ZEB-REVO RT and the more recent GreenValley LiBackPack C50 is investigated for indoor surveys. In order to perform a reliable assessment study, several datasets produced with each sensor are compared to the high-cost georeferenced point cloud obtained with static laser scanning target-based technique.


2021 ◽  
Vol 1 (1) ◽  
pp. 28-33
Author(s):  
Bashar Alsadik

Mapping systems using multi-beam LiDARs are widely used nowadays for different geospatial applications graduating from indoor projects to outdoor city-wide projects. These mobile mapping systems can be either ground-based or aerial-based systems and are mostly equipped with inertial navigation systems INS. The Velodyne HDL-32 LiDAR is a well-known 360° spinning multi-beam laser scanner that is widely used in outdoor and indoor mobile mapping systems. The performance of such LiDARs is an ongoing research topic which is quite important for the quality assurance and quality control topic. The performance of this LiDAR type is correlated to many factors either related to the device itself or the design of the mobile mapping system. Regarding design, most of the mapping systems are equipped with a single Velodyne HDL32 in a specific orientation angle which is different among the mapping systems manufacturers. The LiDAR orientation angle has a significant impact on the performance in terms of the density and coverage of the produced point clouds. Furthermore, during the lifetime of this multi-beam LiDAR, one or more beams may be defected and then either continue the production or returned to the manufacturer to be fixed which then cost time and money. In this paper, the design impact analysis of a mobile laser scanning (MLS) system equipped with a single Velodyne HDL-32E will be clarified and a clear relationship is given between the orientation angle of the LiDAR and the output density of points. The ideal angular orientation of a single Velodyne HDL-32E is found to be at 35° in a mobile mapping system. Furthermore, we investigated the degradation of points density when one of the 32 beams is defected and quantified the density loss percentage and to the best of our knowledge, this is not presented in literature before. It is found that a maximum of about 8% point density loss occurs on the ground and 4% on the facades when having a defected beam of the Velodyne HDL-32E.   


Author(s):  
Hervé Gontran

The development of road database requires the management of continuously growing road databases. Mobile mapping systems can acquire this information, while offering an unbeatable productivity with the combination of navigation and videogrammetry tools. However, the complexity of data georeferencing and the fusion of the results with video sequences require numerous hours of repetitive labor. We propose to introduce the concept of “real time” in the field of mobile mapping. The deterministic exploitation of the data captured during a kinematic survey aims at restricting human intervention in the sophisticated georeferencing process, while authorizing the dissemination of this technique outside well-informed communities. What are the tools and algorithms robust enough to ensure the quality control of the georeferencing of the road objects? We intend to provide these concerns a pertinent answer, while demonstrating the validity of the concept via the automatic acquisition and interpretation of the road geometry.


2021 ◽  
Vol 15 (3) ◽  
pp. 258-267
Author(s):  
Hiroki Matsumoto ◽  
◽  
Yuma Mori ◽  
Hiroshi Masuda

Mobile mapping systems can capture point clouds and digital images of roadside objects. Such data are useful for maintenance, asset management, and 3D map creation. In this paper, we discuss methods for extracting guardrails that separate roadways and walkways. Since there are various shape patterns for guardrails in Japan, flexible methods are required for extracting them. We propose a new extraction method based on point processing and a convolutional neural network (CNN). In our method, point clouds and images are segmented into small fragments, and their features are extracted using CNNs for images and point clouds. Then, features from images and point clouds are combined and investigated using whether they are guardrails or not. Based on our experiments, our method could extract guardrails from point clouds with a high success rate.


Author(s):  
M. Corongiu ◽  
A. Masiero ◽  
G. Tucci

Abstract. Nowadays, mobile mapping systems are widely used to quickly collect reliable geospatial information of relatively large areas: thanks to such characteristics, the number of applications and fields exploiting their usage is continuously increasing. Among such possible applications, mobile mapping systems have been recently considered also by railway system managers to quickly produce and update a database of the geospatial features of such system, also called assets. Despite several vehicles, devices and acquisition methods can be considered for the data collection of the railway system, the predominant one is probably that based on the use of a mobile mapping system mounted on a train, which moves all along the railway tracks, enabling the 3D reproduction of the entire railway track area.Given the large amount of data collected by such mobile mapping, automatic procedures have to be used to speed up the process of extracting the spatial information of interest, i.e. assets positions and characteristics.This paper considers the problem of extracting such information for what concerns cantilever and portal masts, by exploiting a mixed approach. First, a set of candidate areas are extracted and pre-processed by considering certain of their geometric characteristics, mainly extracted by using eigenvalues of the covariance matrix of a point neighborhood. Then, a 3D modified Fisher vector-deep learning neural net is used to classify the candidates. Tests on such approach are conducted in two areas of the Italian railway system.


Sign in / Sign up

Export Citation Format

Share Document