scholarly journals ANALYZING THE EFFECTS OF LAND COVER CHANGE ON SURFACE TEMPERATURE IN MOUNT MAKILING FOREST RESERVE (MMFR) AND ITS NEIGHBORING MUNICIPALITIES USING LANDSAT DATA

Author(s):  
V. K. M. Del Mundo ◽  
C. L. Tiburan Jr.

Abstract. Land Surface Temperature (LST) is said to be affected by frequent changes in the land cover. Over the years, the immediate environs of Mount Makiling Forest Reserve (MMFR) have experienced such kind of change due to rapid economic growth of the area that also led to the expansion of urban centers. The study utilized Landsat imageries to determine the possible effects of land cover change on surface temperature using the integration of remote sensing and GIS technologies. Initially, the multispectral bands were radiometrically corrected using Dark Object Subtraction (DOS) while the thermal bands were corrected using Land Surface Emissivity (LSE). After these corrections were applied, the images were classified using supervised image classification technique where seven land cover types have been identified. The classified images were then validated using 200 reference data and this revealed an overall accuracy of 87.5% and 86.0% for the May 2003 and July 2015 images, respectively. Results showed that changes in land cover resulted to a significant change in Land Surface Temperature (LST). The LST in 2003 (16.49°C – 40.44°C) was found higher than that of 2015 which was observed between 13.35°C and 33.83°C only. The reason behind this is the increase in green spaces from 2003 to 2015. Among the major land cover types, forest lands exhibited the lowest mean surface temperature for both years having 27.27°C in 2003 and 21.35°C in 2015 while built-up areas had the highest surface temperature having 32.60°C in 2003 and 26.00°C in 2015.

2021 ◽  
Vol 13 (3) ◽  
pp. 1099
Author(s):  
Yuhe Ma ◽  
Mudan Zhao ◽  
Jianbo Li ◽  
Jian Wang ◽  
Lifa Hu

One of the climate problems caused by rapid urbanization is the urban heat island effect, which directly threatens the human survival environment. In general, some land cover types, such as vegetation and water, are generally considered to alleviate the urban heat island effect, because these landscapes can significantly reduce the temperature of the surrounding environment, known as the cold island effect. However, this phenomenon varies over different geographical locations, climates, and other environmental factors. Therefore, how to reasonably configure these land cover types with the cooling effect from the perspective of urban planning is a great challenge, and it is necessary to find the regularity of this effect by designing experiments in more cities. In this study, land cover (LC) classification and land surface temperature (LST) of Xi’an, Xianyang and its surrounding areas were obtained by Landsat-8 images. The land types with cooling effect were identified and their ideal configuration was discussed through grid analysis, distance analysis, landscape index analysis and correlation analysis. The results showed that an obvious cooling effect occurred in both woodland and water at different spatial scales. The cooling distance of woodland is 330 m, much more than that of water (180 m), but the land surface temperature around water decreased more than that around the woodland within the cooling distance. In the specific urban planning cases, woodland can be designed with a complex shape, high tree planting density and large planting areas while water bodies with large patch areas to cool the densely built-up areas. The results of this study have utility for researchers, urban planners and urban designers seeking how to efficiently and reasonably rearrange landscapes with cooling effect and in urban land design, which is of great significance to improve urban heat island problem.


2018 ◽  
Vol 7 (4.20) ◽  
pp. 608 ◽  
Author(s):  
Muhammad Mejbel Salih ◽  
Oday Zakariya Jasim ◽  
Khalid I. Hassoon ◽  
Aysar Jameel Abdalkadhum

This paper illustrates a proposed method for the retrieval of land surface temperature (LST) from the two thermal bands of the LANDSAT-8 data. LANDSAT-8, the latest satellite from Landsat series, launched on 11 February 2013, using LANDSAT-8 Operational Line Imager and Thermal Infrared Sensor (OLI & TIRS) satellite data. LANDSAT-8 medium spatial resolution multispectral imagery presents particular interest in extracting land cover, because of the fine spectral resolution, the radiometric quantization of 12 bits. In this search a trial has been made to estimate LST over Al-Hashimiya district, south of Babylon province, middle of Iraq. Two dates images acquired on 2nd &18th of March 2018 to retrieve LST and compare them with ground truth data from infrared thermometer camera (all the measurements contacted with target by using type-k thermocouple) at the same time of images capture. The results showed that the rivers had a higher LST which is different to the other land cover types, of less than 3.47 C ◦, and the LST different for vegetation and residential area were less than 0.4 C ◦ with correlation coefficient of the two bands 10 and 11 Rbnad10= 0.70, Rband11 = 0.89 respectively, for the imaged acquired on the 2nd of march 2018 and Rband10= 0.70 and Rband11 = 0.72 on the 18th of march 2018. These results confirm that the proposed approach is effective for the retrieval of LST from the LANDSAT-8 Thermal bands, and the IR thermometer camera data which is an effective way to validate and improve the performance of LST retrieval. Generally the results show that the closer measurement taken from the scene center time, a better quality to classify the land cover. The purpose of this study is to assess the use of LANDSAT-8 data to specify temperature differences in land cover and compare the relationship between land surface temperature and land cover types.   


Author(s):  
I. Ibrahim ◽  
A. Abu Samah ◽  
R. Fauzi ◽  
N. M. Noor

Land cover type is an important signature that is usually used to understand the interaction between the ground surfaces with the local temperature. Various land cover types such as high density built up areas, vegetation, bare land and water bodies are areas where heat signature are measured using remote sensing image. The aim of this study is to analyse the impact of land surface temperature on land cover types. The objectives are 1) to analyse the mean temperature for each land cover types and 2) to analyse the relationship of temperature variation within land cover types: built up area, green area, forest, water bodies and bare land. The method used in this research was supervised classification for land cover map and mono window algorithm for land surface temperature (LST) extraction. The statistical analysis of post hoc Tukey test was used on an image captured on five available images. A pixel-based change detection was applied to the temperature and land cover images. The result of post hoc Tukey test for the images showed that these land cover types: built up-green, built up-forest, built up-water bodies have caused significant difference in the temperature variation. However, built up-bare land did not show significant impact at p<0.05. These findings show that green areas appears to have a lower temperature difference, which is between 2° to 3° Celsius compared to urban areas. The findings also show that the average temperature and the built up percentage has a moderate correlation with R<sup>2</sup> = 0.53. The environmental implications of these interactions can provide some insights for future land use planning in the region.


2019 ◽  
Vol 8 (4) ◽  
pp. 11949-11955

The monitoring of land surface temperature (LST) can assist scientists to better understand the possible effect of climate change on land cover types and in conducting appropriate analysis. The earth's annual temperature has moved up and down a few degrees Celsius, including Malaysia, over the past few million years. The location of Malaysia near the equator line and experiences tropical monsoon season were important to take into consideration to the LST changes. In this paper, the eight-day LST time series data for 14-year period (Jan 2003 – Dec 2016) was downloaded from Moderate Resolution Imaging Spectroradiometer (MODIS) website with two types of satellites which are Terra and Aqua. This study focused on two gridded areas in Peninsular Malaysia; the first one which is exposed to North East monsoon, namely super region 21 and another one to South West monsoon, which is super region 26. These two areas are selected due to they being the largest land area covered within the grid relative to other grids. The objective of this study is to compare the eight- day daytime LST pattern between two monsoons with different land cover types for both satellites. Analysis such as cubic spline function with the annual periodic boundary condition and weighted least square (WLS) regression were performed to extract annual seasonal trend for the areas covered. The results of LST showed most of the gridded areas experience similar seasonal pattern for each year but different pattern were discovered when both monsoons were considered. Moreover, the LST trends also changed according to the land cover types over the study period


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9115 ◽  
Author(s):  
Muhammad Amir Siddique ◽  
Liu Dongyun ◽  
Pengli Li ◽  
Umair Rasool ◽  
Tauheed Ullah Khan ◽  
...  

Rapid urbanization is changing the existing patterns of land use land cover (LULC) globally, which is consequently increasing the land surface temperature (LST) in many regions. The present study is focused on estimating current and simulating future LULC and LST trends in the urban environment of Chaoyang District, Beijing. Past patterns of LULC and LST were identified through the maximum likelihood classification (MLC) method and multispectral Landsat satellite images during the 1990–2018 data period. The cellular automata (CA) and stochastic transition matrix of the Markov model were applied to simulate future (2025) LULC and LST changes, respectively, using their past patterns. The CA model was validated for the simulated and estimated LULC for 1990–2018, with an overall Kappa (K) value of 0.83, using validation modules in IDRISI software. Our results indicated that the cumulative changes in built-up to vegetation area were 74.61 km2 (16.08%) and 113.13 km2 (24.38%) from 1990 to 2018. The correlation coefficient of land use and land cover change (LULCC), including vegetation, water bodies and built-up area, had values of r =  − 0.155 (p > 0.005), −0.809 (p = 0.000), and 0.519 (p > 0.005), respectively. The results of future analysis revealed that there will be an estimated 164.92 km2 (−12%) decrease in vegetation area, while an expansion of approximately 283.04 km2 (6% change) will occur in built-up areas from 1990 to 2025. This decrease in vegetation cover and expansion of settlements would likely cause a rise of approximately ∼10.74 °C and ∼12.66 °C in future temperature, which would cause a rise in temperature (2025). The analyses could open an avenue regarding how to manage urban land cover patterns to enhance the resilience of cities to climate warming. This study provides scientific insights for environmental development and sustainability through efficient and effective urban planning and management in Beijing and will also help strengthen other research related to the UHI phenomenon in other parts of the world.


2021 ◽  
Vol 12 (2) ◽  
pp. 66-74
Author(s):  
Ricky Anak Kemarau ◽  
Oliver Valentine Eboy

Wetlands are a vital component of land cover in reducing impacts caused by urban heat effects and climate change. Remote sensing technology provides historical data that can study the impact of development on the environment and local climate. The studies of wetland in reducing Land Surface Temperature (LST) in a tropical climate are still lacking. The objective of the study is to examine the influence of land cover change wetland and vegetation on land surface temperature between the years 1988 and 2019. First of all, step, pre-processing, namely geometric correction, atmosphere correction, and radiometric correction, were performed before retrieval of the LST dataset from thermal band Landsat 5 and 8. Then, Iso Cluster, unsupervised was chosen to produce the land cover map for 1988 and 2019. Geographical Information System (GIS) technology was utilized to determine changes to land cover and LST change between the years 1988 and 2019. With GIS technology, a study of the impact of wetland deforestation on local temperatures at a local scale was carried out. Next to that, correlations between LST and the wetland were analyzed. The results indicated the different land cover between the years 1988 and 2019. The areas of land cover for wetland and vegetation decrease and while area of urban increased. The land cover changed the influences of LST significantly in the study area. The LST increased with the decreasing in areas wetland areas for every 5-kilometer square (km²) wetland lost an increase in 1-degree Celsius of LS was estimated. The size of wetland influence on LST was significant. Wetland and vegetation function in reducing the urban heat island effect was vital in providing a comfortable environment to the Kuching population and indirectly reduce the demand for power energy.


2020 ◽  
Vol 20 (3) ◽  
Author(s):  
Rosana Amaral Carrasco ◽  
Mayara Maezano Faita Pinheiro ◽  
José Marcato Junior ◽  
Rejane Ennes Cicerelli ◽  
Paulo Antônio Silva ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document