scholarly journals HYPERSPECTRAL HYPERION IMAGERY ANALYSIS AND ITS APPLICATION USING SPECTRAL ANALYSIS

Author(s):  
W. Pervez ◽  
S. A. Khan ◽  
Valiuddin

Rapid advancement in remote sensing open new avenues to explore the hyperspectral Hyperion imagery pre-processing techniques, analysis and application for land use mapping. The hyperspectral data consists of 242 bands out of which 196 calibrated/useful bands are available for hyperspectral applications. Atmospheric correction applied to the hyperspectral calibrated bands make the data more useful for its further processing/ application. Principal component (PC) analysis applied to the hyperspectral calibrated bands reduced the dimensionality of the data and it is found that 99% of the data is held in first 10 PCs. Feature extraction is one of the important application by using vegetation delineation and normalized difference vegetation index. The machine learning classifiers uses the technique to identify the pixels having significant difference in the spectral signature which is very useful for classification of an image. Supervised machine learning classifier technique has been used for classification of hyperspectral image which resulted in overall efficiency of 86.6703 and Kappa co-efficient of 0.7998.

PLoS ONE ◽  
2016 ◽  
Vol 11 (12) ◽  
pp. e0166898 ◽  
Author(s):  
Monique A. Ladds ◽  
Adam P. Thompson ◽  
David J. Slip ◽  
David P. Hocking ◽  
Robert G. Harcourt

TecnoLógicas ◽  
2019 ◽  
Vol 22 (46) ◽  
pp. 1-14 ◽  
Author(s):  
Jorge Luis Bacca ◽  
Henry Arguello

Spectral image clustering is an unsupervised classification method which identifies distributions of pixels using spectral information without requiring a previous training stage. The sparse subspace clustering-based methods (SSC) assume that hyperspectral images lie in the union of multiple low-dimensional subspaces.  Using this, SSC groups spectral signatures in different subspaces, expressing each spectral signature as a sparse linear combination of all pixels, ensuring that the non-zero elements belong to the same class. Although these methods have shown good accuracy for unsupervised classification of hyperspectral images, the computational complexity becomes intractable as the number of pixels increases, i.e. when the spatial dimension of the image is large. For this reason, this paper proposes to reduce the number of pixels to be classified in the hyperspectral image, and later, the clustering results for the missing pixels are obtained by exploiting the spatial information. Specifically, this work proposes two methodologies to remove the pixels, the first one is based on spatial blue noise distribution which reduces the probability to remove cluster of neighboring pixels, and the second is a sub-sampling procedure that eliminates every two contiguous pixels, preserving the spatial structure of the scene. The performance of the proposed spectral image clustering framework is evaluated in three datasets showing that a similar accuracy is obtained when up to 50% of the pixels are removed, in addition, it is up to 7.9 times faster compared to the classification of the data sets without incomplete pixels.


2020 ◽  
Vol 9 (1) ◽  
pp. 1700-1704

Classification of target from a mixture of multiple target information is quite challenging. In This paper we have used supervised Machine learning algorithm namely Linear Regression to classify the received data which is a mixture of target-return with the noise and clutter. Target state is estimated from the classified data using Kalman filter. Linear Kalman filter with constant velocity model is used in this paper. Minimum Mean Square Error (MMSE) analysis is used to measure the performance of the estimated track at various Signal to Noise Ratio (SNR) levels. The results state that the error is high for Low SNR, for High SNR the error is Low


10.2196/20995 ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. e20995
Author(s):  
Debbie Rankin ◽  
Michaela Black ◽  
Bronac Flanagan ◽  
Catherine F Hughes ◽  
Adrian Moore ◽  
...  

Background Machine learning techniques, specifically classification algorithms, may be effective to help understand key health, nutritional, and environmental factors associated with cognitive function in aging populations. Objective This study aims to use classification techniques to identify the key patient predictors that are considered most important in the classification of poorer cognitive performance, which is an early risk factor for dementia. Methods Data were used from the Trinity-Ulster and Department of Agriculture study, which included detailed information on sociodemographic, clinical, biochemical, nutritional, and lifestyle factors in 5186 older adults recruited from the Republic of Ireland and Northern Ireland, a proportion of whom (987/5186, 19.03%) were followed up 5-7 years later for reassessment. Cognitive function at both time points was assessed using a battery of tests, including the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS), with a score <70 classed as poorer cognitive performance. This study trained 3 classifiers—decision trees, Naïve Bayes, and random forests—to classify the RBANS score and to identify key health, nutritional, and environmental predictors of cognitive performance and cognitive decline over the follow-up period. It assessed their performance, taking note of the variables that were deemed important for the optimized classifiers for their computational diagnostics. Results In the classification of a low RBANS score (<70), our models performed well (F1 score range 0.73-0.93), all highlighting the individual’s score from the Timed Up and Go (TUG) test, the age at which the participant stopped education, and whether or not the participant’s family reported memory concerns to be of key importance. The classification models performed well in classifying a greater rate of decline in the RBANS score (F1 score range 0.66-0.85), also indicating the TUG score to be of key importance, followed by blood indicators: plasma homocysteine, vitamin B6 biomarker (plasma pyridoxal-5-phosphate), and glycated hemoglobin. Conclusions The results suggest that it may be possible for a health care professional to make an initial evaluation, with a high level of confidence, of the potential for cognitive dysfunction using only a few short, noninvasive questions, thus providing a quick, efficient, and noninvasive way to help them decide whether or not a patient requires a full cognitive evaluation. This approach has the potential benefits of making time and cost savings for health service providers and avoiding stress created through unnecessary cognitive assessments in low-risk patients.


2021 ◽  
Vol 30 (1) ◽  
pp. 93-110
Author(s):  
Tianyi Wang ◽  

Differential equations are widely used to model systems that change over time, some of which exhibit chaotic behaviors. This paper proposes two new methods to classify these behaviors that are utilized by a supervised machine learning algorithm. Dissipative chaotic systems, in contrast to conservative chaotic systems, seem to follow a certain visual pattern. Also, the machine learning program written in the Wolfram Language is utilized to classify chaotic behavior with an accuracy around 99.1±1.1%.


Sign in / Sign up

Export Citation Format

Share Document