scholarly journals Rockfall vulnerability assessment for reinforced concrete buildings

2010 ◽  
Vol 10 (10) ◽  
pp. 2055-2066 ◽  
Author(s):  
O. Mavrouli ◽  
J. Corominas

Abstract. The vulnerability of buildings to the impact of rockfalls is a topic that has recently attracted increasing attention in the scientific literature. The quantification of the vulnerability, when based on empirical or heuristic approaches requires data recorded from historical rockfalls, which are not always available. This is the reason why appropriate alternatives are required. The use of analytical and numerical models can be one of them. In this paper, a methodology is proposed for the analytical evaluation of the vulnerability of reinforced concrete buildings. The vulnerability is included in the risk equation by incorporating the uncertainty of the impact location of the rock block and the subsequent damage level. The output is a weighted vulnerability that ranges from 0 to 1 and expresses the potential damage that a rock block causes to a building in function of its velocity and size. The vulnerability is calculated by the sum of the products of the probability of block impact on each element of the building and its associated damage state, the latter expressed in relative recovery cost terms. The probability of exceeding a specific damage state such as non-structural, local, partial, extensive or total collapse is also important for the quantification of risk and to this purpose, several sets of fragility curves for various rock diameters and increasing velocities have been prepared. An example is shown for the case of a simple reinforced concrete building and impact energies from 0 to 4075 kJ.

2021 ◽  
Vol 16 (1) ◽  
pp. 1-5
Author(s):  
Jagat K. Shrestha ◽  
Nirajan Paudel ◽  
Bishal Koirala ◽  
Binod R. Giri ◽  
Adarsha Lamichhane

Gorkha Earthquake in 2015 has impacted considerably in the design and construction of buildings in Nepal. Strength and Safety of life and constructions have become the prime concerns of the government and the public. Regulation is required to achieve the strength and safety in the constructions. Hence, a need for revision of building codes has been felt and Nepal Building Code, NBC105 has been revised. This paper presents the impact of the revised code on seismic load estimation for low rise reinforced concrete buildings. For the assessment of the impact linear and non- linear static and linear dynamic analysis of reinforced concrete residential buildings of two storey and four Storey has been taken subjected to Indian Standard Codes IS 1893: 2002, IS 1893:2016, Nepal Building Codes NBC 105: 1994 and NBC 105: 2020. The buildings were modeled and analyzed in SAP2000. The response of the buildings such as time period, base shear, drifts, and storey forces from the application of the four codes was compared. The comparison of the results shows that the structural response of the building under the revised NBC105:2020 is 60% to 65% higher compared to the previous code NBC105:1994.


2013 ◽  
Vol 13 (7) ◽  
pp. 1903-1912 ◽  
Author(s):  
R. Ditommaso ◽  
M. Vona ◽  
M. R. Gallipoli ◽  
M. Mucciarelli

Abstract. The aim of this paper is an empirical estimation of the fundamental period of reinforced concrete buildings and its variation due to structural and non-structural damage. The 2009 L'Aquila earthquake has highlighted the mismatch between experimental data and code provisions value not only for undamaged buildings but also for the damaged ones. The 6 April 2009 L'Aquila earthquake provided the first opportunity in Italy to estimate the fundamental period of reinforced concrete (RC) buildings after a strong seismic sequence. A total of 68 buildings with different characteristics, such as age, height and damage level, have been investigated by performing ambient vibration measurements that provided their fundamental translational period. Four different damage levels were considered according with the definitions by EMS 98 (European Macroseismic Scale), trying to regroup the estimated fundamental periods versus building heights according to damage. The fundamental period of RC buildings estimated for low damage level is equal to the previous relationship obtained in Italy and Europe for undamaged buildings, well below code provisions. When damage levels are higher, the fundamental periods increase, but again with values much lower than those provided by codes. Finally, the authors suggest a possible update of the code formula for the simplified estimation of the fundamental period of vibration for existing RC buildings, taking into account also the inelastic behaviour.


Sign in / Sign up

Export Citation Format

Share Document