scholarly journals Wave-induced extreme water levels in the Puerto Morelos fringing reef lagoon

2012 ◽  
Vol 12 (12) ◽  
pp. 3765-3773 ◽  
Author(s):  
A. Torres-Freyermuth ◽  
I. Mariño-Tapia ◽  
C. Coronado ◽  
P. Salles ◽  
G. Medellín ◽  
...  

Abstract. Wave-induced extreme water levels in the Puerto Morelos fringing reef lagoon are investigated by means of a phase-resolving non-hydrostatic wave model (SWASH). This model solves the nonlinear shallow water equations including non-hydrostatic pressure. The one-dimensional version of the model is implemented in order to investigate wave transformation in fringing reefs. Firstly, the numerical model is validated with (i) laboratory experiments conducted on a physical model (Demirbilek et al., 2007)and (ii) field observations (Coronado et al., 2007). Numerical results show good agreement with both experimental and field data. The comparison against the physical model results, for energetic wave conditions, indicates that high- and low-frequency wave transformation is well reproduced. Moreover, extreme water-level conditions measured during the passage of Hurricane Ivan in Puerto Morelos are also estimated by the numerical tool. Subsequently, the model is implemented at different along-reef locations in Puerto Morelos. Extreme water levels, wave-induced setup, and infragravity wave energy are estimated inside the reef lagoon for different storm wave conditions (Hs >2 m). The numerical results revealed a strong correlation between the offshore sea-swell wave energy and the setup. In contrast, infragravity waves are shown to be the result of a more complex pattern which heavily relies on the reef geometry. Indeed, the southern end of the reef lagoon provides evidence of resonance excitation, suggesting that the reef barrier may act as either a natural flood protection morphological feature, or as an inundation hazard enhancer depending on the incident wave conditions.

2019 ◽  
Vol 7 (8) ◽  
pp. 239 ◽  
Author(s):  
Xiaoxia Zhang ◽  
Qiang Zeng ◽  
Zhen Liu

Recently, the integrated development of wave energy converters and breakwaters has become popular, moving from traditional passive wave absorption to active energy capture. In this study, rectangular heaving buoys are considered as floating breakwater modules to absorb wave energy. A numerical wave tank is established based on Reynolds Averaged Navier-Stokes equation and User-Define-Function in ANSYS-Fluent commercial software. The numerical results show that incident wave conditions and submerged depth have significant effects on the heaving performance and wave energy absorption of a rectangular buoy. Flow structures around the buoy are shown to exhibit flow separations and vortex shedding, which can provide more information on buoy optimization. Power take-off (PTO) reaction forces are assumed to be a linear function of the translation velocities of the buoy. Numerical results demonstrate that a suitable PTO module can improve the wave power absorption by up to 34.2% for certain buoy and wave conditions, which is valuable for further investigations.


2021 ◽  
Vol 9 (5) ◽  
pp. 518
Author(s):  
Gabriela Medellín ◽  
Martí Mayor ◽  
Christian M. Appendini ◽  
Ruth Cerezo-Mota ◽  
José A. Jiménez

Wave runup is a relevant parameter to determine the storm impact on barrier islands. Here, the role of the beach morphology on wave runup and storm impact was investigated at four coastal communities located on the northern Yucatan coast. Current wave conditions based on regional wind simulations, topo-bathymetric transects measured at each location, and a nonlinear wave transformation model were employed to reconstruct multi-year runup time series. Dune morphology features and extreme water levels (excluding storm surge contributions) were further employed to determine the storm impact at each site for different return periods. Despite the similar offshore conditions along the coast, extreme water levels (i.e., runup and setup) showed intersite differences that were mainly ascribed to subaerial and submerged morphological features. Numerical results showed that the average surf zone beach slope, sandbars, berm, and dune elevation played an important role in controlling extreme water levels and storm impact at the study sites under the present climate. Moreover, in order to assess the potential effect of climate change on coastal flooding, we analyzed wave runup and storm impact in the best-preserved site by considering wave conditions and sea level rise (SLR) projections under the RCP 8.5 scenario. Modelling results suggest no significant increase in the storm impact regime between the present and future conditions in the study area unless SLR is considered. It was found that to accurately estimate SLR contribution, it should be incorporated into mean sea level prior to performing numerical wave runup simulations, rather than simply adding it to the resulting wave-induced water levels.


1980 ◽  
Vol 1 (17) ◽  
pp. 180
Author(s):  
P.A. Madsen ◽  
I.A. Svendsen ◽  
C. Michaelsen

The paper describes an analytical approach to the problem of wave induced oscillations of a long ship in water with a depth which is only slightly larger than the draught of the ship. The problem is linearized (i.e. small amplitude motions and waves) and the water flow induced by the incident waves, and by the motion of the ship is determined. This also yields results for the forces in the equations of motion for the ship. These equations can be solved analytically, but the paper concentrates on giving numerical results for the solutions. Results are also given for the hydrodynamic masses and movements of inertia, and for the damping due to radiation of wave energy.


Author(s):  
Gaelle Faivre ◽  
Oriane Lagrabe ◽  
Krishna Kotra ◽  
Rodger Tomlinson ◽  
Brendan Mackey ◽  
...  

Coral reefs encircle most of the islands in Vanuatu and provide natural breakwaters for coastal communities by reducing wave energy arriving at the shoreline acting to control both inundation and erosion. Climate Change is projected to both exacerbate coastal hazards and endanger corals. The aim of this paper is to better understand the parameters that govern hydrodynamics on fringing reef systems. The interaction between the depth, waves and currents are studied from measurements conducted in Erakor lagoon, Vanuatu.Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/mPrG6NWL4dM


2016 ◽  
Vol 16 (1) ◽  
pp. 167-180 ◽  
Author(s):  
G. Medellín ◽  
J. A. Brinkkemper ◽  
A. Torres-Freyermuth ◽  
C. M. Appendini ◽  
E. T. Mendoza ◽  
...  

Abstract. We present a downscaling approach for the study of wave-induced extreme water levels at a location on a barrier island in Yucatán (Mexico). Wave information from a 30-year wave hindcast is validated with in situ measurements at 8 m water depth. The maximum dissimilarity algorithm is employed for the selection of 600 representative cases, encompassing different combinations of wave characteristics and tidal level. The selected cases are propagated from 8 m water depth to the shore using the coupling of a third-generation wave model and a phase-resolving non-hydrostatic nonlinear shallow-water equation model. Extreme wave run-up, R2%, is estimated for the simulated cases and can be further employed to reconstruct the 30-year time series using an interpolation algorithm. Downscaling results show run-up saturation during more energetic wave conditions and modulation owing to tides. The latter suggests that the R2% can be parameterized using a hyperbolic-like formulation with dependency on both wave height and tidal level. The new parametric formulation is in agreement with the downscaling results (r2  =  0.78), allowing a fast calculation of wave-induced extreme water levels at this location. Finally, an assessment of beach vulnerability to wave-induced extreme water levels is conducted at the study area by employing the two approaches (reconstruction/parameterization) and a storm impact scale. The 30-year extreme water level hindcast allows the calculation of beach vulnerability as a function of return periods. It is shown that the downscaling-derived parameterization provides reasonable results as compared with the numerical approach. This methodology can be extended to other locations and can be further improved by incorporating the storm surge contributions to the extreme water level.


2015 ◽  
Vol 3 (5) ◽  
pp. 3077-3117 ◽  
Author(s):  
G. Medellín ◽  
J. A. Brinkkemper ◽  
A. Torres-Freyermuth ◽  
C. M. Appendini ◽  
E. T. Mendoza ◽  
...  

Abstract. We present a downscaling approach for the study of wave-induced extreme water levels at a location on a barrier island in Yucatan (Mexico). Wave information from a 30 year wave hindcast is validated with in situ measurements at 8 m water depth. The Maximum Dissimilarity Algorithm is employed for the selection of 600 representative cases, encompassing different wave characteristics and tidal level combinations. The selected cases are propagated from 8 m water depth till the shore using the coupling of a third-generation wave model and a phase-resolving non-hydrostatic Nonlinear Shallow Water Equations model. Extreme wave runup, R2%, is estimated for the simulated cases and can be further employed to reconstruct the 30 year period using an interpolation algorithm. Downscaling results show runup saturation during more energetic wave conditions and modulation owing to tides. The latter suggests that the R2% can be parameterized using a hyperbolic-like formulation with dependency on both wave height and tidal level. The new parametric formulation is in agreement with the downscaling results (r2 = 0.78), allowing a fast calculation of wave-induced extreme water levels at this location. Finally, an assessment of beach vulnerability to wave-induced extreme water level is conducted at the study area by employing the two approaches (reconstruction/parametrization) and a storm impact scale. The 30 year extreme water level hindcast allows the calculation of beach vulnerability as a function of return periods. It is shown that the downscaling-derived parameterization provides reasonable results as compared with the numerical approach. This methodology can be extended to other locations and can be further improved by incorporating the storm surge contributions to the extreme water level.


2005 ◽  
Vol 128 (1) ◽  
pp. 56-64 ◽  
Author(s):  
Gaelle Duclos ◽  
Aurelien Babarit ◽  
Alain H. Clément

Considered as a source of renewable energy, wave is a resource featuring high variability at all time scales. Furthermore wave climate also changes significantly from place to place. Wave energy converters are very often tuned to suit the more frequent significant wave period at the project site. In this paper we show that optimizing the device necessitates accounting for all possible wave conditions weighted by their annual occurrence frequency, as generally given by the classical wave climate scatter diagrams. A generic and very simple wave energy converter is considered here. It is shown how the optimal parameters can be different considering whether all wave conditions are accounted for or not, whether the device is controlled or not, whether the productive motion is limited or not. We also show how they depend on the area where the device is to be deployed, by applying the same method to three sites with very different wave climate.


Ocean Science ◽  
2015 ◽  
Vol 11 (3) ◽  
pp. 439-453 ◽  
Author(s):  
J. Park ◽  
W. V. Sweet ◽  
R. Heitsenrether

Abstract. Seiches are normal modes of water bodies responding to geophysical forcings with potential to significantly impact ecology and maritime operations. Analysis of high-frequency (1 Hz) water level data in Monterey, California, identifies harbor modes between 10 and 120 s that are attributed to specific geographic features. It is found that modal amplitude modulation arises from cross-modal interaction and that offshore wave energy is a primary driver of these modes. Synchronous coupling between modes is observed to significantly impact dynamic water levels. At lower frequencies with periods between 15 and 60 min, modes are independent of offshore wave energy, yet are continuously present. This is unexpected since seiches normally dissipate after cessation of the driving force, indicating an unknown forcing. Spectral and kinematic estimates of these low-frequency oscillations support the idea that a persistent anticyclonic mesoscale gyre adjacent to the bay is a potential mode driver, while discounting other sources.


Sign in / Sign up

Export Citation Format

Share Document