scholarly journals Improvement of typhoon wind hazard model and its sensitivity analysis

2019 ◽  
Author(s):  
Yunxia Guo ◽  
Yijun Hou ◽  
Peng Qi

Abstract. Typhoons are one of the most serious natural disasters that occur annually on China’s southeast coast. This paper describes a technique for analyzing the typhoon wind hazard based on the empirical track model. Existing simplified and non-simplified typhoon empirical track models are improved, and the improved tracking models are shown to significantly increase the correlation in regression analysis. We also investigate quantitatively the sensitivity of the typhoon wind hazard model. The effects of different typhoon decay models, the simplified and non-simplified typhoon tracking models, different statistical models for the radius to maximum winds (Rmax) and Holland pressure profile parameter (B), and different extreme value distributions on the predicted extreme wind speed of different return periods are all investigated. Comparisons of estimated typhoon wind speeds for 50-year and 100-year return periods under the influence of different factors are presented. The different models of Rmax and B are found to have greatest impact on the prediction of extreme wind speed, followed by the extreme value distributions, typhoon tracking models, and typhoon decay models. This paper constitutes a useful reference for predicting extreme wind speed using the empirical track model.

2021 ◽  
Author(s):  
Georgios Blougouras ◽  
Chris G. Tzanis ◽  
Kostas Philippopoulos

<p>Extreme wind speeds are a multifaceted environmental risk. They may cause considerable damage to infrastructure (e.g., bridges, private property), they can jeopardize maritime and aviation activities, and sometimes even human safety. Furthermore, the design of wind turbines for on and off-shore wind farms requires a study of the return periods of extreme wind speeds in combination with the lifespan of the wind turbines. Windstorms also result in major economic losses and cause up to 80 % of the natural hazards' long term insurance loss in Europe. The scope of this work is to identify location-specific extreme wind speed thresholds and obtain accurate estimates of exceedances for multiple future horizons. In this context, the Extreme Value Analysis framework is used for providing the return periods and the respective return levels of extreme wind speeds. The Peaks Over Threshold method is utilized for the 10 m wind speed for a domain centered over Greece, in Southeastern Mediterranean. Wind speed data at 10 m are extracted from the ERA5 reanalysis dataset that provides hourly estimates of surface wind speed with a horizontal resolution of 0.25°x0.25°, from 1979/01/01 up to 2019/12/31 (i.e., 41 years). The thresholds are selected using the Mean Residual Life plots, which is the most reliable method for identifying accurate threshold values. The seasonal analysis of the exceedances is discussed in terms of the physical mechanisms in the region. The exceedances are modelled using the Generalized Pareto Distribution, whose shape and scale parameters (<em>ξ</em> and <em>σ</em>, respectively) are estimated using the Maximum Likelihood Estimation method. The return levels and their confidence intervals are estimated for return periods up to 100 years. Geographic Information Systems are used for mapping future projections of extreme wind speeds and the corresponding confidence intervals. The results are discussed in terms of identifying high-risk areas and the findings could assist in informed decision-making in the wind energy industry. The proposed methodological framework could be extended to other areas characterized by particularly high wind speeds and the results can contribute towards sustainable investments and support adaptation mechanisms.</p>


2021 ◽  
Author(s):  
Tianyu Qin ◽  
Yu Hao ◽  
Juan He

Abstract Background: Although the occurrence of some infectious diseases including TB was found to be associated with specific weather factors, few studies have incorporated weather factors into the model to predict the incidence of tuberculosis (TB). We aimed to establish an accurate forecasting model using TB data in Guangdong Province, incorporating local weather factors.Methods: Data of sixteen meteorological variables (2003-2016) and the TB incidence data (2004-2016) of Guangdong were collected. Seasonal autoregressive integrated moving average (SARIMA) model was constructed based on the data. SARIMA model with weather factors as explanatory variables (SARIMAX) was performed to fit and predict TB incidence in 2017. Results: Maximum temperature, maximum daily rainfall, minimum relative humidity, mean vapor pressure, extreme wind speed, maximum atmospheric pressure, mean atmospheric pressure and illumination duration were significantly associated with log(TB incidence). After fitting the SARIMAX model, maximum pressure at lag 6 (β= -0.007, P < 0.05, 95% confidence interval (CI): -0.011, -0.002, mean square error (MSE): 0.279) was negatively associated with log(TB incidence), while extreme wind speed at lag 5 (β=0.009, P < 0.05, 95% CI: 0.005, 0.013, MSE: 0.143) was positively associated. SARIMAX (1, 1, 1) (0, 1, 1)12 with extreme wind speed at lag 5 was the best predictive model with lower Akaike information criterion (AIC) and MSE. The predicted monthly TB incidence all fall within the confidence intervals using this model. Conclusions: Weather factors have different effects on TB incidence in Guangdong. Incorporating meteorological factors into the model increased the accuracy of prediction.


Sign in / Sign up

Export Citation Format

Share Document