scholarly journals Using empirical mode decomposition to correlate paleoclimatic time-series

2007 ◽  
Vol 7 (2) ◽  
pp. 299-307 ◽  
Author(s):  
J. Solé ◽  
A. Turiel ◽  
J. E. Llebot

Abstract. Determination of the timing and duration of paleoclimatic events is a challenging task. Classical techniques for time-series analysis rely too strongly on having a constant sampling rate, which poorly adapts to the uneven time recording of paleoclimatic variables; new, more flexible methods issued from Non-Linear Physics are hence required. In this paper, we have used Huang's Empirical Mode Decomposition (EMD) for the analysis of paleoclimatic series. We have studied three different time series of temperature proxies, characterizing oscillation patterns by using EMD. To measure the degree of temporal correlation of two variables, we have developed a method that relates couples of modes from different series by calculating the instantaneous phase differences among the associated modes. We observed that when two modes exhibited a constant phase difference, their frequencies were nearly equal to that of Milankovich cycles. Our results show that EMD is a good methodology not only for synchronization of different records but also for determination of the different local frequencies in each time series. Some of the obtained modes may be interpreted as the result of global forcing mechanisms.

2011 ◽  
Vol 03 (04) ◽  
pp. 509-526 ◽  
Author(s):  
R. FALTERMEIER ◽  
A. ZEILER ◽  
A. M. TOMÉ ◽  
A. BRAWANSKI ◽  
E. W. LANG

The analysis of nonlinear and nonstationary time series is still a challenge, as most classical time series analysis techniques are restricted to data that is, at least, stationary. Empirical mode decomposition (EMD) in combination with a Hilbert spectral transform, together called Hilbert-Huang transform (HHT), alleviates this problem in a purely data-driven manner. EMD adaptively and locally decomposes such time series into a sum of oscillatory modes, called Intrinsic mode functions (IMF) and a nonstationary component called residuum. In this contribution, we propose an EMD-based method, called Sliding empirical mode decomposition (SEMD), which, with a reasonable computational effort, extends the application area of EMD to a true on-line analysis of time series comprising a huge amount of data if recorded with a high sampling rate. Using nonlinear and nonstationary toy data, we demonstrate the good performance of the proposed algorithm. We also show that the new method extracts component signals that fulfill all criteria of an IMF very well and that it exhibits excellent reconstruction quality. The method itself will be refined further by a weighted version, called weighted sliding empirical mode decomposition (wSEMD), which reduces the computational effort even more while preserving the reconstruction quality.


2018 ◽  
Vol 99 ◽  
pp. 14-29 ◽  
Author(s):  
Keegan J. Moore ◽  
Mehmet Kurt ◽  
Melih Eriten ◽  
D. Michael McFarland ◽  
Lawrence A. Bergman ◽  
...  

2014 ◽  
Vol 635-637 ◽  
pp. 790-794
Author(s):  
Yu Kui Wang ◽  
Hong Ru Li ◽  
Peng Ye

A novel method which is based on ensemble empirical mode decomposition (EEMD) and symbolic time series analysis (STSA) was proposed in this paper. Firstly, the vibration signal of hydraulic pump was decomposed into a number of stationary intrinsic mode functions (IMFs). Secondly, the sensitive component was extracted. Finally, the relative entropy (RE) was extracted from the sensitive components and they were used as the indicator to distinguish the faults of hydraulic pump. The research results of actual testing vibration signal demonstrated the rationality and effectiveness of the proposed method in this paper.


Sign in / Sign up

Export Citation Format

Share Document