scholarly journals Salinity as a key control on the diazotrophic community composition in the Baltic Sea

2021 ◽  
Author(s):  
Christian Furbo Reeder ◽  
Ina Stoltenberg ◽  
Jamileh Javidpour ◽  
Carolin Regina Löscher

Abstract. Over the next decade, the Baltic Sea is predicted to undergo severe changes including a decrease in salinity due to altering precipitation. This will likely impact the distribution and community composition of Baltic Sea N2 fixing microbes, of which especially heterocystous cyanobacteria are adapted to low salinities and may expand to waters with currently higher salinity, including the Danish Strait and Kattegat, while other high-salinity adapted N2 fixers might decrease in abundance. In order to explore the impact of salinity on the distribution and activity of different diazotrophic clades, we followed the natural salinity gradient from the Eastern Gotland and Bornholm Basins through the Arkona Basin to the Kiel Bight and combined N2 fixation rate measurements with a molecular analysis of the diazotrophic community using the key functional marker gene for N2 fixation nifH, as well as the key functional marker genes anf and vnf, encoding for the two alternative nitrogenases. We detected N2 fixation rates between 0.7 and 6 nmol N L-1 d-1, and the diazotrophic community was dominated by the cyanobacterium Nodularia and the small unicellular, cosmopolitan cyanobacterium UCYN-A. Nodularia was present in abundances between 8.07 x 105 and 1.6 x 107 copies L-1 in waters with salinities of 10 and below, while UCYN-A reached abundances of up to 4.5 x 107 copies L-1 in waters with salinity above 10. Besides those two cyanobacterial diazotrophs, we found several clades of proteobacterial N2 fixers and alternative nitrogenase genes associated with Rhodopseudomonas palustris, a purple non-sulfur bacterium. Based on statistical testing, salinity was identified as the primary parameter describing the diazotrophic distribution, while pH and temperature did not have a similarly significant influence on the diazotrophic distribution. While this statistical analysis will need to be explored in direct experiments, it gives an indication for a future development of diazotrophy in a freshening Baltic Sea with UCYN-A retracting to more saline North Sea waters and heterocystous cyanobacteria expanding as salinity decreases.

2003 ◽  
Vol 33 ◽  
pp. 261-270 ◽  
Author(s):  
M Staal ◽  
S te Lintel Hekkert ◽  
FJM Harren ◽  
LJ Stal

2010 ◽  
Vol 37 (4) ◽  
pp. 273 ◽  
Author(s):  
Karen Fey ◽  
Peter B. Banks ◽  
Hannu Ylönen ◽  
Erkki Korpimäki

Context. Potential mammalian prey commonly use the odours of their co-evolved predators to manage their risks of predation. But when the risk comes from an unknown source of predation, odours might not be perceived as dangerous, and anti-predator responses may fail, except possibly if the alien predator is of the same archetype as a native predator. Aims. In the present study we examined anti-predator behavioural responses of voles from the outer archipelagos of the Baltic Sea, south-western Finland, where they have had no resident mammalian predators in recent history. Methods. We investigated responses of field voles (Microtus agrestis) to odours of native least weasels (Mustela nivalis) and a recently invading alien predator, the American mink (Mustela vison), in laboratory. We also studied the short-term responses of free-ranging field voles and bank voles (Myodes glareolus) to simulated predation risk by alien mink on small islands in the outer archipelago of the Baltic Sea. Key results. In the laboratory, voles avoided odour cues of native weasel but not of alien mink. It is possible that the response to mink is a context dependent learned response which could not be induced in the laboratory, whereas the response to weasel is innate. In the field, however, voles reduced activity during their normal peak-activity times at night as a response to simulated alien-mink predation risk. No other shifts in space use or activity in safer microhabitats or denser vegetation were apparent. Conclusions. Voles appeared to recognise alien minks as predators from their odours in the wild. However, reduction in activity is likely to be only a short-term immediate response to mink presence, which is augmented by longer-term strategies of habitat shift. Because alien mink still strongly suppresses vole dynamics despite these anti-predator responses, we suggest that behavioural naiveté may be the primary factor in the impact of an alien predator on native prey. Implications. Prey naiveté has long been considered as the root cause of the devastating impacts of alien predators, whereby native prey simply fail to recognise and respond to the novel predation risk. Our results reveal a more complex form of naiveté whereby native prey appeared to recognise alien predators as a threat but their response is ultimately inadequate. Thus, recognition alone is unlikely to afford protection for native prey from alien-predator impacts. Thus, management strategies that, for example, train prey in recognition of novel threats must induce effective responses if they are expected to succeed.


2014 ◽  
Vol 11 (17) ◽  
pp. 4913-4924 ◽  
Author(s):  
F. Korth ◽  
B. Deutsch ◽  
C. Frey ◽  
C. Moros ◽  
M. Voss

Abstract. Nitrate (NO3−) is the major nutrient responsible for coastal eutrophication worldwide and its production is related to intensive food production and fossil-fuel combustion. In the Baltic Sea NO3− inputs have increased 4-fold over recent decades and now remain constantly high. NO3− source identification is therefore an important consideration in environmental management strategies. In this study focusing on the Baltic Sea, we used a method to estimate the proportional contributions of NO3− from atmospheric deposition, N2 fixation, and runoff from pristine soils as well as from agricultural land. Our approach combines data on the dual isotopes of NO3− (δ15N-NO3− and δ18O-NO3−) in winter surface waters with a Bayesian isotope mixing model (Stable Isotope Analysis in R, SIAR). Based on data gathered from 47 sampling locations over the entire Baltic Sea, the majority of the NO3− in the southern Baltic was shown to derive from runoff from agricultural land (33–100%), whereas in the northern Baltic, i.e. the Gulf of Bothnia, NO3− originates from nitrification in pristine soils (34–100%). Atmospheric deposition accounts for only a small percentage of NO3− levels in the Baltic Sea, except for contributions from northern rivers, where the levels of atmospheric NO3− are higher. An additional important source in the central Baltic Sea is N2 fixation by diazotrophs, which contributes 49–65% of the overall NO3− pool at this site. The results obtained with this method are in good agreement with source estimates based upon δ15N values in sediments and a three-dimensional ecosystem model, ERGOM. We suggest that this approach can be easily modified to determine NO3− sources in other marginal seas or larger near-coastal areas where NO3− is abundant in winter surface waters when fractionation processes are minor.


2021 ◽  
Author(s):  
Christian Reeder ◽  
Carolin Löscher

<p>The Baltic Sea is characterised as a semi-enclosed brackish Sea that has experienced increased eutrophication, hypoxia, and increased temperature over the last ~100 years making Baltic Sea one of the most severely impacted oceanic environment by climate change. Biological fixation of dinitrogen gas (N<sub>2</sub>) is an essential process to make atmospheric N<sub>2</sub> available for marine life. This process is carried out by specialised organisms called diazotrophs and is catalysed by the energetic-consuming enzyme nitrogenase. Nitrogenases exist in three subtypes depending on their metal cofactors, (1) the most common molybdenum-dependent (Nif), (2) the vanadium-dependent (Vnf) and (3) the Iron-Iron-dependent nitrogenase (Anf). To date, the effect of climate change on those three enzyme subtypes and their potential role a future ocean is yet to be explored. The predicted ongoing oxygen loss in the ocean may limit Mo's availability and trigger a shift from the abundant Nif-type nitrogenase to Vnf or Anf and, therefore, a potential shift in the diazotrophic community. This study explored the climate change-related pressures on N<sub>2</sub> fixation and the diazotrophic community based on nifH and vnf/anfD amplicons. At the time of sampling, we found a post-bloom high-nutrient low-chlorophyll situation. Cyanobacterial groups, Nodularia and UCYN-A, dominated the diazotrophic community and showed a horizontal where UCYN-A were the dominant fixers at 20 m. Based on alternative nitrogenases amplicons, Rhodopseudomonas was the dominating microbe in the surface water. This paper presents the first hint of active nitrogenases in surface water and further establish UCYN-A as a significant player in Baltic Sea primary production.</p>


AMBIO ◽  
2019 ◽  
Vol 48 (11) ◽  
pp. 1325-1336 ◽  
Author(s):  
Alena Bartosova ◽  
René Capell ◽  
Jørgen E. Olesen ◽  
Mohamed Jabloun ◽  
Jens Christian Refsgaard ◽  
...  

Abstract The Baltic Sea is suffering from eutrophication caused by nutrient discharges from land to sea, and these loads might change in a changing climate. We show that the impact from climate change by mid-century is probably less than the direct impact of changing socioeconomic factors such as land use, agricultural practices, atmospheric deposition, and wastewater emissions. We compare results from dynamic modelling of nutrient loads to the Baltic Sea under projections of climate change and scenarios for shared socioeconomic pathways. Average nutrient loads are projected to increase by 8% and 14% for nitrogen and phosphorus, respectively, in response to climate change scenarios. In contrast, changes in the socioeconomic drivers can lead to a decrease of 13% and 6% or an increase of 11% and 9% in nitrogen and phosphorus loads, respectively, depending on the pathway. This indicates that policy decisions still play a major role in climate adaptation and in managing eutrophication in the Baltic Sea region.


2012 ◽  
Vol 9 (8) ◽  
pp. 2973-2988 ◽  
Author(s):  
N. Wannicke ◽  
S. Endres ◽  
A. Engel ◽  
H.-P. Grossart ◽  
M. Nausch ◽  
...  

Abstract. Heterocystous cyanobacteria of the genus Nodularia form extensive blooms in the Baltic Sea and contribute substantially to the total annual primary production. Moreover, they dispense a large fraction of new nitrogen to the ecosystem when inorganic nitrogen concentration in summer is low. Thus, it is of ecological importance to know how Nodularia will react to future environmental changes, in particular to increasing carbon dioxide (CO2) concentrations and what consequences there might arise for cycling of organic matter in the Baltic Sea. Here, we determined carbon (C) and dinitrogen (N2) fixation rates, growth, elemental stoichiometry of particulate organic matter and nitrogen turnover in batch cultures of the heterocystous cyanobacterium Nodularia spumigena under low (median 315 μatm), mid (median 353 μatm), and high (median 548 μatm) CO2 concentrations. Our results demonstrate an overall stimulating effect of rising pCO2 on C and N2 fixation, as well as on cell growth. An increase in pCO2 during incubation days 0 to 9 resulted in an elevation in growth rate by 84 ± 38% (low vs. high pCO2) and 40 ± 25% (mid vs. high pCO2), as well as in N2 fixation by 93 ± 35% and 38 ± 1%, respectively. C uptake rates showed high standard deviations within treatments and in between sampling days. Nevertheless, C fixation in the high pCO2 treatment was elevated compared to the other two treatments by 97% (high vs. low) and 44% (high vs. mid) at day 0 and day 3, but this effect diminished afterwards. Additionally, elevation in carbon to nitrogen and nitrogen to phosphorus ratios of the particulate biomass formed (POC : POP and PON : POP) was observed at high pCO2. Our findings suggest that rising pCO2 stimulates the growth of heterocystous diazotrophic cyanobacteria, in a similar way as reported for the non-heterocystous diazotroph Trichodesmium. Implications for biogeochemical cycling and food web dynamics, as well as ecological and socio-economical aspects in the Baltic Sea are discussed.


Sign in / Sign up

Export Citation Format

Share Document