scholarly journals Marine forearc structure of eastern Java and its role in the 1994 Java tsunami earthquake

2021 ◽  
Author(s):  
Yueyang Xia ◽  
Jacob Geersen ◽  
Dirk Klaeschen ◽  
Bo Ma ◽  
Dietrich Lange ◽  
...  

Abstract. We resolve a previously unrecognized shallow subducting seamount from a re-processed multichannel seismic depth image crossing the 1994 M7.8 Java tsunami earthquake slip area. Seamount subduction is related to the uplift of the overriding plate by lateral shortening and vertical thickening, causing pronounced back-thrusting at the landward slope of the forearc high and the formation of splay faults branching off the landward flank of the subducting seamount. The location of the seamount in relation to the 1994 earthquake hypocentre and its co-seismic slip model suggests that the seamount acted as a seismic barrier to the up-dip co-seismic rupture propagation of this moderate size earthquake. The wrapping of the co-seismic slip contours around the seamount indicates that it diverted rupture propagation, documenting the control of forearc structures on seismic rupture.

Solid Earth ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 2467-2477
Author(s):  
Yueyang Xia ◽  
Jacob Geersen ◽  
Dirk Klaeschen ◽  
Bo Ma ◽  
Dietrich Lange ◽  
...  

Abstract. We resolve a previously unrecognized shallow subducting seamount from a re-processed multichannel seismic profile crossing the 1994 Mw 7.8 Java tsunami earthquake rupture area. Seamount subduction occurs where the overriding plate experiences uplift by lateral shortening and vertical thickening. Pronounced back-thrusting at the landward slope of the forearc high and the formation of splay faults branching off the landward flank of the subducting seamount are observed. The location of the seamount in relation to the 1994 earthquake hypocentre and its co-seismic slip model suggests that the seamount acted as a seismic barrier to the up-dip co-seismic rupture propagation of this moderate-size earthquake.


2013 ◽  
Vol 194 (2) ◽  
pp. 640-650 ◽  
Author(s):  
V. Mikhailov ◽  
V. Lyakhovsky ◽  
I. Panet ◽  
Y. van Dinther ◽  
M. Diament ◽  
...  

2014 ◽  
Vol 397 ◽  
pp. 1-9 ◽  
Author(s):  
Rebecca Bell ◽  
Caroline Holden ◽  
William Power ◽  
Xiaoming Wang ◽  
Gaye Downes

2007 ◽  
Vol SpecialIssue ◽  
pp. 92-93
Author(s):  
K. Ujiie

The fault rocks in ancient accretionary complexes exhumed from seismogenic depths may provide an invaluable opportunity to examine the mechanisms and mechanics of seismic slip in subduction thrusts and splay faults. In order to understand the dynamics of earthquake faulting in subduction zones, we analyzed pseudotachylytes and ultracataclasites from the Shimanto accretionary complex in southwest Japan. <br><br> doi:<a href="http://dx.doi.org/10.2204/iodp.sd.s01.21.2007" target="_blank">10.2204/iodp.sd.s01.21.2007</a>


2021 ◽  
Vol 225 (2) ◽  
pp. 1048-1061
Author(s):  
Ina Storch ◽  
Stefan Buske ◽  
Pia Victor ◽  
Onno Oncken

SUMMARY The Northern Chilean subduction zone is characterized by long-term subduction erosion with very little sediment input at the trench and the lack of an accretionary prism. Here, multichannel seismic reflection (MCS) data were acquired as part of the CINCA (Crustal Investigations off- and onshore Nazca Plate/Central Andes) project in 1995. These lines cover among others the central part of the MW 8.1 Iquique earthquake rupture zone before the earthquake occurred on 1 April 2014. We have re-processed one of the lines crossing the updip parts of this earthquake at 19°40′S, close to its hypocentre. After careful data processing and data enhancement, we applied a coherency-based pre-stack depth migration algorithm, yielding a detailed depth image. The resulting depth image shows the subduction interface prior to the Iquique megathrust earthquake down to a depth of approximately 16 km and gives detailed insight into the characteristics of the seismogenic coupling zone. We found significantly varying interplate reflectivity along the plate interface which we interpret to be caused by the comparably strong reflectivity of subducted fluid-rich sediments within the grabens and half-grabens that are predominant in this area due to the subduction-related bending of the oceanic plate. No evidence was found for a subducted seamount associated to the Iquique Ridge along the slab interface at this latitude as interpreted earlier from the same data set. By comparing relocated fore- and aftershock seismicity of the Iquique earthquake with the resulting depth image, we can divide the continental wedge into two domains. First, a frontal unit beneath the lower slope with several eastward dipping back-rotated splay faults but no seismicity in the upper plate as well as along the plate interface. Secondly, a landward unit beneath the middle slope with differing reflectivity that shows significant seismicity in the upper plate as well as along the plate interface. Both units are separated by a large eastward dipping mega splay fault, the root zone of which shows diffuse seismicity, both in the upper plate and at the interface. The identification of a well-defined nearly aseismic frontal unit sheds new light on the interplate locking beneath the lower continental slope and its controls.


2018 ◽  
Vol 18 (2) ◽  
pp. 531-553 ◽  
Author(s):  
Esther Hintersberger ◽  
Kurt Decker ◽  
Johanna Lomax ◽  
Christopher Lüthgens

Abstract. Intraplate regions characterized by low rates of seismicity are challenging for seismic hazard assessment, mainly for two reasons. Firstly, evaluation of historic earthquake catalogues may not reveal all active faults that contribute to regional seismic hazard. Secondly, slip rate determination is limited by sparse geomorphic preservation of slowly moving faults. In the Vienna Basin (Austria), moderate historical seismicity (Imax,obs/Mmax,obs=8/5.2) concentrates along the left-lateral strike-slip Vienna Basin Transfer Fault (VBTF). In contrast, several normal faults branching out from the VBTF show neither historical nor instrumental earthquake records, although geomorphological data indicate Quaternary displacement along those faults. Here, located about 15 km outside of Vienna, the Austrian capital, we present a palaeoseismological dataset of three trenches that cross one of these splay faults, the Markgrafneusiedl Fault (MF), in order to evaluate its seismic potential. Comparing the observations of the different trenches, we found evidence for five to six surface-breaking earthquakes during the last 120 kyr, with the youngest event occurring at around 14 ka. The derived surface displacements lead to magnitude estimates ranging between 6.2±0.5 and 6.8±0.4. Data can be interpreted by two possible slip models, with slip model 1 showing more regular recurrence intervals of about 20–25 kyr between the earthquakes with M≥6.5 and slip model 2 indicating that such earthquakes cluster in two time intervals in the last 120 kyr. Direct correlation between trenches favours slip model 2 as the more plausible option. Trench observations also show that structural and sedimentological records of strong earthquakes with small surface offset have only low preservation potential. Therefore, the earthquake frequency for magnitudes between 6 and 6.5 cannot be constrained by the trenching records. Vertical slip rates of 0.02–0.05 mm a−1 derived from the trenches compare well to geomorphically derived slip rates of 0.02–0.09 mm a−1. Magnitude estimates from fault dimensions suggest that the largest earthquakes observed in the trenches activated the entire fault surface of the MF including the basal detachment that links the normal fault with the VBTF. The most important implications of these palaeoseismological results for seismic hazard assessment are as follows. (1) The MF is an active seismic source, capable of rupturing the surface despite the lack of historical earthquakes. (2) The MF is kinematically and geologically equivalent to a number of other splay faults of the VBTF. It is reasonable to assume that these faults are potential sources of large earthquakes as well. The frequency of strong earthquakes near Vienna is therefore expected to be significantly higher than the earthquake frequency reconstructed for the MF alone. (3) Although rare events, the potential for earthquake magnitudes equal or greater than M=7.0 in the Vienna Basin should be considered in seismic hazard studies.


2017 ◽  
Vol 721 ◽  
pp. 143-150 ◽  
Author(s):  
Wenyuan Fan ◽  
Dan Bassett ◽  
Junle Jiang ◽  
Peter M. Shearer ◽  
Chen Ji

2017 ◽  
Vol 39 (6) ◽  
pp. 106-121
Author(s):  
A. O. Verpahovskaya ◽  
V. N. Pilipenko ◽  
Е. V. Pylypenko

2019 ◽  
Author(s):  
Han-Chi Hsieh ◽  
Wei-Zhong Zheng ◽  
Ko-Chiang Chen ◽  
Ying-Hui Lai

2021 ◽  
Vol 40 (3) ◽  
pp. 1-12
Author(s):  
Hao Zhang ◽  
Yuxiao Zhou ◽  
Yifei Tian ◽  
Jun-Hai Yong ◽  
Feng Xu

Reconstructing hand-object interactions is a challenging task due to strong occlusions and complex motions. This article proposes a real-time system that uses a single depth stream to simultaneously reconstruct hand poses, object shape, and rigid/non-rigid motions. To achieve this, we first train a joint learning network to segment the hand and object in a depth image, and to predict the 3D keypoints of the hand. With most layers shared by the two tasks, computation cost is saved for the real-time performance. A hybrid dataset is constructed here to train the network with real data (to learn real-world distributions) and synthetic data (to cover variations of objects, motions, and viewpoints). Next, the depth of the two targets and the keypoints are used in a uniform optimization to reconstruct the interacting motions. Benefitting from a novel tangential contact constraint, the system not only solves the remaining ambiguities but also keeps the real-time performance. Experiments show that our system handles different hand and object shapes, various interactive motions, and moving cameras.


Sign in / Sign up

Export Citation Format

Share Document