scholarly journals Supraglacial lake bathymetry automatically derived from ICESat-2 constraining lake depth estimates from multi-source satellite imagery

2021 ◽  
Vol 15 (11) ◽  
pp. 5115-5132
Author(s):  
Rajashree Tri Datta ◽  
Bert Wouters

Abstract. We introduce an algorithm (Watta) which automatically calculates supraglacial lake bathymetry and detects potential ice layers along tracks of the ICESat-2 (Ice, Cloud, and Land Elevation Satellite) laser altimeter. Watta uses photon heights estimated by the ICESat-2 ATL03 product and extracts supraglacial lake surface, bottom, and depth corrected for refraction and (sub-)surface ice cover in addition to producing surface heights at the native resolution of the ATL03 photon cloud. These measurements are used to constrain empirical estimates of lake depth from satellite imagery, which were thus far dependent on sparse sets of in situ measurements for calibration. Imagery sources include Landsat 8 Operational Land Imager (OLI), Sentinel-2, and high-resolution Planet Labs PlanetScope and SkySat data, used here for the first time to calculate supraglacial lake depths. The Watta algorithm was developed and tested using a set of 46 lakes near Sermeq Kujalleq (Jakobshavn) glacier in western Greenland, and we use multiple imagery sources (available for 45 of these lakes) to assess the use of the red vs. green band to extrapolate depths along a profile to full lake volumes. We use Watta-derived estimates in conjunction with high-resolution imagery from both satellite-based sources (tasked over the season) and nearly simultaneous Operation IceBridge CAMBOT (Continuous Airborne Mapping By Optical Translator) imagery (on a single airborne flight) for a focused study of the drainage of a single lake over the 2019 melt season. Our results suggest that the use of multiple imagery sources (both publicly available and commercial), in combination with altimetry-based depths, can move towards capturing the evolution of supraglacial hydrology at improved spatial and temporal scales.

2021 ◽  
Author(s):  
Rajashree Tri Datta ◽  
Bert Wouters

Abstract. We introduce an algorithm (Watta), which automatically calculates supraglacial lake bathymmetry and potential ice layers along tracks of the ICESat-2 laser altimeter. Watta uses photon heights estimated by the ICESat-2 ATL03 product and extracts supraglacial lake surface, bottom, corrected depth and (sub)surface ice cover in addition to producing surface heights at the native resolution of the ATL03 photon cloud. These measurements are used to constrain empirical estimates of lake depth from satellite imagery, which were thus far dependent on sparse sets of in-situ measurements for calibration. Imagery sources include Landsat OLI, Sentinel-2 and high-resolution Planet Labs PlanetScope and SkySat data, used here for the first time to calculate supraglacial lake depths. The Watta algorithm was developed and tested using a set of 46 lakes near Sermeq Kujalleq (Jakobshavn) glacier in Western Greenland, and we use multiple imagery sources to assess the use of the red vs green band to extrapolate depths along a profile to full lake volumes. We use Watta-derived estimates in conjunction with high-resolution imagery from both satellite-based sources (tasked over the season) and nearly-simultaneous Operation IceBridge CAMBOT imagery (on a single airborne flight) for a focused study of the drainage of a single lake over the 2019 melt season. Our results suggest that the use of multiple imagery sources (both publicly-available and commercial) in combination with altimetry-based depths, can move towards capturing the evolution of supraglacial hydrology at improved spatial and temporal scales.


2021 ◽  
Author(s):  
Bert Wouters ◽  
Rajashree Tri Datta

<p>We introduce an algorithm (Watta), which automatically calculates supraglacial lake bathymmetry and potential ice layers along tracks of the ICESat-2 laser altimeter. Watta uses photon heights estimated by the ICESat-2 ATL03 product and extracts supraglacial lake surface, bottom, corrected depth and (sub)surface ice cover in addition to producing surface heights at the native resolution of the ATL03 photon cloud. These measurements are used to constrain empirical estimates of lake depth from satellite imagery, which were thus far dependent on sparse sets of in-situ measurements for calibration. Imagery sources include Landsat OLI, Sentinel-2 and high-resolution Planet Labs PlanetScope and SkySat data, used here for the first time to calculate supraglacial lake depths.</p><p>The Watta algorithm was developed and tested using a set of 46 lakes near Sermeq Kujalleq (Jakobshavn) glacier in Western Greenland, and we use multiple imagery sources to assess the use of the red vs green band to extrapolate depths along a profile to full lake volumes. We use Watta-derived estimates in conjunction with high-resolution imagery from both satellite-based sources (tasked over the season) and nearly-simultaneous Operation IceBridge CAMBOT imagery (on a single airborne flight) for a focused study of the drainage of a single lake over the 2019 melt season.   Our results suggest that the use of multiple imagery sources (both publicly-available and commercial) in combination with altimetry-based depths, can move towards capturing the evolution of supraglacial hydrology at improved spatial and temporal scales.</p>


Forests ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 896 ◽  
Author(s):  
Andrew Lister ◽  
Tonya Lister ◽  
Thomas Weber

Forest fragmentation and degradation are a problem in many areas of the world and are a cause for concern to land managers. Similarly, countries interested in curtailing climate change have a keen interest in monitoring forest degradation. Traditional methods for measuring forested landscape pattern dynamics with maps made from classified satellite imagery fall short with respect to the compatibility of their forest definitions with information needs. In addition, they are not easily amenable to interpretation using tools like confidence intervals derived from survey sampling theory. In this paper, we described a novel landscape monitoring approach that helps fill these gaps. In it, a grid of photo plots is efficiently created and overlaid on high-resolution imagery, points are labeled with respect to their land-use by a human interpreter, and mean values and their variance are calculated for a suite of point-based fragmentation metrics related to forest degradation. We presented three case studies employing this approach from the US states of Maryland and Pennsylvania, highlighted different survey sampling paradigms, and discussed the strengths and weaknesses of the method relative to traditional, satellite imagery-based approaches. Results indicate that the scale of forest fragmentation in Maryland is between 250 and 1000 m, and this agrees with compatible estimates derived from raster analytical methods. There is a positive relationship between an index of housing construction and change in forest aggregation as measured by our metrics, and strong agreement between metric values collected by human interpretation of imagery and those obtained from a land cover map from the same period. We showed how the metrics respond to simulated degradation, and offered suggestions for practitioners interested in leveraging rapid photointerpretation for forest degradation monitoring.


Author(s):  
Guoyuan Li ◽  
Xinming Tang ◽  
Xiaoming Gao ◽  
Chongyang Zhang ◽  
Tao Li

ZY-3 is the first civilian high resolution stereo mapping satellite, which has been launched on 9th, Jan, 2012. The aim of ZY-3 satellite is to obtain high resolution stereo images and support the 1:50000 scale national surveying and mapping. Although ZY-3 has very high accuracy for direct geo-locations without GCPs (Ground Control Points), use of some GCPs is still indispensible for high precise stereo mapping. The GLAS (Geo-science Laser Altimetry System) loaded on the ICESat (Ice Cloud and land Elevation Satellite), which is the first laser altimetry satellite for earth observation. GLAS has played an important role in the monitoring of polar ice sheets, the measuring of land topography and vegetation canopy heights after launched in 2003. Although GLAS has ended in 2009, the derived elevation dataset still can be used after selection by some criteria. <br><br> In this paper, the ICESat/GLAS laser altimeter data is used as height reference data to improve the ZY-3 height accuracy. A selection method is proposed to obtain high precision GLAS elevation data. Two strategies to improve the ZY-3 height accuracy are introduced. One is the conventional bundle adjustment based on RFM and bias-compensated model, in which the GLAS footprint data is viewed as height control. The second is to correct the DSM (Digital Surface Model) straightly by simple block adjustment, and the DSM is derived from the ZY-3 stereo imaging after freedom adjustment and dense image matching. The experimental result demonstrates that the height accuracy of ZY-3 without other GCPs can be improved to 3.0 meter after adding GLAS elevation data. What’s more, the comparison of the accuracy and efficiency between the two strategies is implemented for application.


Author(s):  
Guoyuan Li ◽  
Xinming Tang ◽  
Xiaoming Gao ◽  
Chongyang Zhang ◽  
Tao Li

ZY-3 is the first civilian high resolution stereo mapping satellite, which has been launched on 9th, Jan, 2012. The aim of ZY-3 satellite is to obtain high resolution stereo images and support the 1:50000 scale national surveying and mapping. Although ZY-3 has very high accuracy for direct geo-locations without GCPs (Ground Control Points), use of some GCPs is still indispensible for high precise stereo mapping. The GLAS (Geo-science Laser Altimetry System) loaded on the ICESat (Ice Cloud and land Elevation Satellite), which is the first laser altimetry satellite for earth observation. GLAS has played an important role in the monitoring of polar ice sheets, the measuring of land topography and vegetation canopy heights after launched in 2003. Although GLAS has ended in 2009, the derived elevation dataset still can be used after selection by some criteria. &lt;br&gt;&lt;br&gt; In this paper, the ICESat/GLAS laser altimeter data is used as height reference data to improve the ZY-3 height accuracy. A selection method is proposed to obtain high precision GLAS elevation data. Two strategies to improve the ZY-3 height accuracy are introduced. One is the conventional bundle adjustment based on RFM and bias-compensated model, in which the GLAS footprint data is viewed as height control. The second is to correct the DSM (Digital Surface Model) straightly by simple block adjustment, and the DSM is derived from the ZY-3 stereo imaging after freedom adjustment and dense image matching. The experimental result demonstrates that the height accuracy of ZY-3 without other GCPs can be improved to 3.0 meter after adding GLAS elevation data. What’s more, the comparison of the accuracy and efficiency between the two strategies is implemented for application.


2021 ◽  
Vol 974 (8) ◽  
pp. 36-44
Author(s):  
R.V. Permyakov

Stereopairs of very-high resolution satellite imagery constitute one of the key high-accurate data sources on heights. A stereophotogrammetric technique is a key method of processing these data. Despite that a number of spacecrafts gathering very-high-resolution imagery in a stereo mode constantly increases, the area of the Earth regularly covered by such data and stored in the archives of RSD operators remains relatively small and, as a rule, is limited only to large urban agglomerations. The new collection may not suit the customer for several reasons. Firstly, the materials of the new stereo collection are more expensive than those of the archived one. Secondly, due to unfavourable weather conditions and a busy schedule of satellites, the completion of the new collection may go beyond the deadline specified by the customer. Well known and brand-new criteria to form multi-temporal, stereopairs are analyzed. The specific of photogrammetric processing multi-temporal stereopairs is demonstrated. Application of multi-temporal stereopairs is described. In conclusion it is confirmed that 3D-models and high accurate DTMs can be generated basing on stereo models from multi-temporal satellite imagery in the absence of the following data


2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Yuyang Geng ◽  
Yun Shao ◽  
Tingting Zhang ◽  
Huaze Gong ◽  
Lan Yang

In this paper, a digital elevation model (DEM) was produced for Lop Nur playa produced with the data from TanDEM-X mission. The spatial resolution is 10 m. It covers an area of 38,000 km2 for orthometric height from 785 m to 900 m above sea level, which is composed of 42 interferometric synthetic aperture radar (InSAR) scenes. A least-square adjustment approach was used to reduce the systematic errors in each DEM scene. The DEM produced was validated with data from other sensors including Ice, Cloud, and land Elevation Satellite (ICESat) Geoscience Laser Altimeter System (GLAS) and aerial Structure-from-Motion (SfM) DEM. The results show that global elevation root mean square error to GLAS is 0.57 m, and the relative height error to SfM DEM in complicated terrain is 3 m. The excellent height reliability of TanDEM InSAR DEM in Lop region was proved in this paper. A reliable high-resolution basic topographic dataset for researches of Lop Nur was provided.


Author(s):  
P. Bholanath ◽  
K. Cort

Monitoring deforestation and forest degradation at national scale has been identified as a national priority under Guyana‟s REDD+ Programme. Based on Guyana‟s MRV (Monitoring Reporting and Verification) System Roadmap developed in 2009, Guyana sought to establish a comprehensive, national system to monitor, report and verify forest carbon emissions resulting from deforestation and forest degradation in Guyana. To date, four national annual assessments have been conducted: 2010, 2011, 2012 and 2013. <br><br> Monitoring of forest change in 2010 was completed with medium resolution imagery, mainly Landsat 5. In 2011, assessment was conducted using a combination of Landsat (5 and 7) and for the first time, 5m high resolution imagery, with RapidEye coverage for approximately half of Guyana where majority of land use changes were taking place. Forest change in 2013 was determined using high resolution imagery for the whole of Guyana. The current method is an automated-assisted process of careful systematic manual interpretation of satellite imagery to identify deforestation based on different drivers of change. The minimum mapping unit (MMU) for deforestation is 1 ha (Guyana‟s forest definition) and a country-specific definition of 0.25 ha for degradation. <br><br> The total forested area of Guyana is estimated as 18.39 million hectares (ha). In 2012 as planned, Guyana‟s forest area was reevaluated using RapidEye 5 m imagery. Deforestation in 2013 is estimated at 12 733 ha which equates to a total deforestation rate of 0.068%. Significant progress was made in 2012 and 2013, in mapping forest degradation. The area of forest degradation as measured by interpretation of 5 m RapidEye satellite imagery in 2013 was 4 352 ha. All results are subject to accuracy assessment and independent third party verification.


Author(s):  
T. Kramm ◽  
D. Hoffmeister

<p><strong>Abstract.</strong> The resolution and accuracy of digital elevation models (DEMs) have direct influence on further geoscientific computations like landform classifications and hydrologic modelling results. Thus, it is crucial to analyse the accuracy of DEMs to select the most suitable elevation model regarding aim, accuracy and scale of the study. Nowadays several worldwide DEMs are available, as well as DEMs covering regional or local extents. In this study a variety of globally available elevation models were evaluated for an area of about 190,000&amp;thinsp;km<sup>2</sup>. Data from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) 30 m, Shuttle Radar Topography Mission (SRTM) 30&amp;thinsp;m and 90&amp;thinsp;m, Advanced Land Observing Satellite (ALOS) World 3D 30&amp;thinsp;m and TanDEM-X WorldDEM&amp;trade; &amp;ndash; 12&amp;thinsp;m and 90&amp;thinsp;m resolution were obtained. Additionally, several very high resolution DEM data were derived from stereo satellite imagery from SPOT 6/7 and Pléiades for smaller areas of about 100&amp;ndash;400&amp;thinsp;km<sup>2</sup> for each dataset. All datasets were evaluated with height points of the Geoscience Laser Altimeter System (GLAS) instrument aboard the NASA Ice, Cloud, and land Elevation (ICESat) satellite on a regional scale and with nine very high resolution elevation models from UAV-based photogrammetry on a very large scale. For all datasets the root mean square error (RMSE) and normalized median absolute deviation (NMAD) was calculated. Furthermore, the association of errors to specific terrain was conducted by assigning these errors to landforms from the topographic position index (TPI), topographic roughness index (TRI) and slope. For all datasets with a global availability the results show the highest overall accuracies for the TanDEM-X 12&amp;thinsp;m (RMSE: 2.3&amp;thinsp;m, NMAD: 0.8&amp;thinsp;m). The lowest accuracies were detected for the 30&amp;thinsp;m ASTER GDEM v3 (RMSE: 8.9&amp;thinsp;m, NMAD: 7.1&amp;thinsp;m). Depending on the landscape the accuracies are higher for all DEMs in flat landscapes and the errors rise significantly in rougher terrain. Local scale DEMs derived from stereo satellite imagery show a varying overall accuracy, mainly depending on the topography covered by the scene.</p>


2020 ◽  
Vol 237 ◽  
pp. 01001
Author(s):  
Huan Xie ◽  
Hong Tang ◽  
Wenjia Du ◽  
Xiaohua Tong

Surface slope is an important topographic variable, accurate surface slope can support many research appliacations. Large footprint full waveform data has been used to estimate the surface slope and performes well. In this paper, surface slope within laser footprint is calculated using the Ice, Cloud, and land Elevation Satellite (ICESat) Geoscience Laser Altimeter System (GLAS) full waveform data and a high resolution Digital Elevation Model (REMA, the Reference Elevation Model of Antarctica). A comparison is done between two extracted surface slopes, the results show that the slopes extracted from full waveform data are close to slopes extracted from DEM, and the width of waveform can be used to extract surface slope in moderately sloping surface.


Sign in / Sign up

Export Citation Format

Share Document