scholarly journals The contributions of the leading modes of the North Pacific sea surface temperature variability to the Arctic sea ice depletion in recent decades

Author(s):  
Lejiang Yu ◽  
Shiyuan Zhong ◽  
Timo Vihma

Abstract. Arctic sea ice decrease in extent in recent decades has been linked to sea surface temperature (SST) anomalies in the North Pacific Ocean. In this study, we assess the relative contributions of the two leading modes in North Pacific SST anomalies representing external forcing related to global warming and internal forcing related to Pacific Decadal Oscillation (PDO) to the Arctic sea ice loss in boreal summer and autumn. For the 1979–2017 period, the time series of the global warming and PDO modes show significant positive and negative trends, respectively. The global warming mode accounts for 44.9 % and 50.1 % of the Arctic sea ice loss in boreal summer and autumn during this period, compared to the 20.0 % and 22.2 % from the PDO mode. There is also a seasonal difference in the response of atmospheric circulations to the two modes. The PDO mode excites a wavetrain from North Pacific to the Arctic; the wavetrain is not seen in the response of atmospheric circulation to the global warming mode. Both dynamic and thermodynamic forcings work in the relationship of atmospheric circulation and sea ice anomalies.

2017 ◽  
Vol 30 (5) ◽  
pp. 1537-1552 ◽  
Author(s):  
Joe M. Osborne ◽  
James A. Screen ◽  
Mat Collins

Abstract The Arctic is warming faster than the global average. This disproportionate warming—known as Arctic amplification—has caused significant local changes to the Arctic system and more uncertain remote changes across the Northern Hemisphere midlatitudes. Here, an atmospheric general circulation model (AGCM) is used to test the sensitivity of the atmospheric and surface response to Arctic sea ice loss to the phase of the Atlantic multidecadal oscillation (AMO), which varies on (multi-) decadal time scales. Four experiments are performed, combining low and high sea ice states with global sea surface temperature (SST) anomalies associated with opposite phases of the AMO. A trough–ridge–trough response to wintertime sea ice loss is seen in the Pacific–North American sector in the negative phase of the AMO. The authors propose that this is a consequence of an increased meridional temperature gradient in response to sea ice loss, just south of the climatological maximum, in the midlatitudes of the central North Pacific. This causes a southward shift in the North Pacific storm track, which strengthens the Aleutian low with circulation anomalies propagating into North America. While the climate response to sea ice loss is sensitive to AMO-related SST anomalies in the North Pacific, there is little sensitivity to larger-magnitude SST anomalies in the North Atlantic. With background ocean–atmosphere states persisting for a number of years, there is the potential to improve predictions of the impacts of Arctic sea ice loss on decadal time scales.


2021 ◽  
pp. 1-50
Author(s):  
Amélie Simon ◽  
Guillaume Gastineau ◽  
Claude Frankignoul ◽  
Clément Rousset ◽  
Francis Codron

AbstractThe impact of Arctic sea-ice loss on the ocean and atmosphere is investigated focusing on a gradual reduction of Arctic sea-ice by 20% on annual mean, occurring within 30 years, starting from present-day conditions. Two ice-constraining methods are explored to melt Arctic sea-ice in a coupled climate model, while keeping present-day conditions for external forcing. The first method uses a reduction of sea-ice albedo, which modifies the incoming surface shortwave radiation. The second method uses a reduction of thermal conductivity, which changes the heat conduction flux inside ice. Reduced thermal conductivity inhibits oceanic cooling in winter and sea-ice basal growth, reducing seasonality of sea-ice thickness. For similar Arctic sea-ice area loss, decreasing the albedo induces larger Arctic warming than reducing the conductivity, especially in spring. Both ice-constraining methods produce similar climate impacts, but with smaller anomalies when reducing the conductivity. In the Arctic, the sea-ice loss leads to an increase of the North Atlantic water inflow in the Barents Sea and Eastern Arctic, while the salinity decreases and the gyre intensifies in the Beaufort Sea. In the North Atlantic, the subtropical gyre shifts southward and the Atlantic meridional overturning circulation weakens. A dipole of sea-level pressure anomalies sets up in winter over Northern Siberia and the North Atlantic, which resembles the negative phase of the North Atlantic Oscillation. In the tropics, the Atlantic Intertropical Convergence Zone shifts southward as the South Atlantic Ocean warms. In addition, Walker circulation reorganizes and the Southeastern Pacific Ocean cools.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Xavier J. Levine ◽  
Ivana Cvijanovic ◽  
Pablo Ortega ◽  
Markus G. Donat ◽  
Etienne Tourigny

AbstractArctic sea-ice loss is a consequence of anthropogenic global warming and can itself be a driver of climate change in the Arctic and at lower latitudes, with sea-ice minima likely favoring extreme events over Europe and North America. Yet the role that the sea-ice plays in ongoing climate change remains uncertain, partly due to a limited understanding of whether and how the exact geographical distribution of sea-ice loss impacts climate. Here we demonstrate that the climate response to sea-ice loss can vary widely depending on the pattern of sea-ice change, and show that this is due to the presence of an atmospheric feedback mechanism that amplifies the local and remote signals when broader scale sea-ice loss occurs. Our study thus highlights the need to better constrain the spatial pattern of future sea-ice when assessing its impacts on the climate in the Arctic and beyond.


2017 ◽  
Vol 30 (17) ◽  
pp. 6757-6769 ◽  
Author(s):  
H. J. Lee ◽  
M. O. Kwon ◽  
S.-W. Yeh ◽  
Y.-O. Kwon ◽  
W. Park ◽  
...  

Abstract Arctic sea ice area (SIA) during late summer and early fall decreased substantially over the last four decades, and its decline accelerated beginning in the early 2000s. Statistical analyses of observations show that enhanced poleward moisture transport from the North Pacific to the Arctic Ocean contributed to the accelerated SIA decrease during the most recent period. As a consequence, specific humidity in the Arctic Pacific sector significantly increased along with an increase of downward longwave radiation beginning in 2002, which led to a significant acceleration in the decline of SIA in the Arctic Pacific sector. The resulting sea ice loss led to increased evaporation in the Arctic Ocean, resulting in a further increase of the specific humidity in mid-to-late fall, thus acting as a positive feedback to the sea ice loss. The overall set of processes is also found in a long control simulation of a coupled climate model.


2018 ◽  
Vol 31 (19) ◽  
pp. 7823-7843 ◽  
Author(s):  
Lantao Sun ◽  
Michael Alexander ◽  
Clara Deser

The role of transient Arctic sea ice loss in the projected greenhouse gas–induced late-twentieth- to late-twenty-first-century climate change is investigated using the Geophysical Fluid Dynamics Laboratory’s Coupled Model version 3. Two sets of simulations have been conducted, one with representative concentration pathway (RCP) 8.5 radiative forcing and the second with RCP forcing but with Arctic sea ice nudged to its 1990 state. The difference between the two five-member sets indicates the influence of decreasing Arctic sea ice on the climate system. Within the Arctic, sea ice loss is found to be a primary driver of the surface temperature and precipitation changes. Arctic sea ice depletion also plays a dominant role in projected Atlantic meridional overturning circulation weakening and changes in North Atlantic extratropical sea surface temperature and salinity, especially in the first half century. The effect of present-day Arctic sea ice loss on Northern Hemisphere (NH) extratropical atmospheric circulation is small relative to internal variability and the future sea ice loss effect on atmospheric circulation is distinct from the projected anthropogenic change. Arctic sea ice loss warms NH extratropical continents and is an important contributor to global warming not only over high latitudes but also in the eastern United States. Last, the Arctic sea ice loss displaces the Pacific intertropical convergence zone (ITCZ) equatorward and induces a “mini-global warming” in the tropical upper troposphere.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
E. VanWormer ◽  
J. A. K. Mazet ◽  
A. Hall ◽  
V. A. Gill ◽  
P. L. Boveng ◽  
...  

Abstract Climate change-driven alterations in Arctic environments can influence habitat availability, species distributions and interactions, and the breeding, foraging, and health of marine mammals. Phocine distemper virus (PDV), which has caused extensive mortality in Atlantic seals, was confirmed in sea otters in the North Pacific Ocean in 2004, raising the question of whether reductions in sea ice could increase contact between Arctic and sub-Arctic marine mammals and lead to viral transmission across the Arctic Ocean. Using data on PDV exposure and infection and animal movement in sympatric seal, sea lion, and sea otter species sampled in the North Pacific Ocean from 2001–2016, we investigated the timing of PDV introduction, risk factors associated with PDV emergence, and patterns of transmission following introduction. We identified widespread exposure to and infection with PDV across the North Pacific Ocean beginning in 2003 with a second peak of PDV exposure and infection in 2009; viral transmission across sympatric marine mammal species; and association of PDV exposure and infection with reductions in Arctic sea ice extent. Peaks of PDV exposure and infection following 2003 may reflect additional viral introductions among the diverse marine mammals in the North Pacific Ocean linked to change in Arctic sea ice extent.


2015 ◽  
Vol 28 (6) ◽  
pp. 2154-2167 ◽  
Author(s):  
Judith Perlwitz ◽  
Martin Hoerling ◽  
Randall Dole

Abstract Arctic temperatures have risen dramatically relative to those of lower latitudes in recent decades, with a common supposition being that sea ice declines are primarily responsible for amplified Arctic tropospheric warming. This conjecture is central to a hypothesis in which Arctic sea ice loss forms the beginning link of a causal chain that includes weaker westerlies in midlatitudes, more persistent and amplified midlatitude waves, and more extreme weather. Through model experimentation, the first step in this chain is examined by quantifying contributions of various physical factors to October–December (OND) mean Arctic tropospheric warming since 1979. The results indicate that the main factors responsible for Arctic tropospheric warming are recent decadal fluctuations and long-term changes in sea surface temperatures (SSTs), both located outside the Arctic. Arctic sea ice decline is the largest contributor to near-surface Arctic temperature increases, but it accounts for only about 20% of the magnitude of 1000–500-hPa warming. These findings thus disconfirm the hypothesis that deep tropospheric warming in the Arctic during OND has resulted substantially from sea ice loss. Contributions of the same factors to recent midlatitude climate trends are then examined. It is found that pronounced circulation changes over the North Atlantic and North Pacific result mainly from recent decadal ocean fluctuations and internal atmospheric variability, while the effects of sea ice declines are very small. Therefore, a hypothesized causal chain of hemisphere-wide connections originating from Arctic sea ice loss is not supported.


2012 ◽  
Vol 6 (4) ◽  
pp. 2653-2687 ◽  
Author(s):  
A. E. West ◽  
A. B. Keen ◽  
H. T. Hewitt

Abstract. The fully-coupled climate model HadGEM1 produces one of the most accurate simulations of the historical record of Arctic sea ice seen in the IPCC AR4 multi-model ensemble. In this study, we examine projections of sea ice decline out to 2030, produced by two ensembles of HadGEM1 with natural and anthropogenic forcings included. These ensembles project a significant slowing of the rate of ice loss to occur after 2010, with some integrations even simulating a small increase in ice area. We use an energy budget of the Arctic to examine the causes of this slowdown. A negative feedback effect by which rapid reductions in ice thickness north of Greenland reduce ice export is found to play a major role. A slight reduction in ocean-to-ice heat flux in the relevant period, caused by changes in the MOC and subpolar gyre in some integrations, is also found to play a part. Finally, we assess the likelihood of a slowdown occurring in the real world due to these causes.


2014 ◽  
Vol 14 (7) ◽  
pp. 10929-10999 ◽  
Author(s):  
R. Döscher ◽  
T. Vihma ◽  
E. Maksimovich

Abstract. The Arctic sea ice is the central and essential component of the Arctic climate system. The depletion and areal decline of the Arctic sea ice cover, observed since the 1970's, have accelerated after the millennium shift. While a relationship to global warming is evident and is underpinned statistically, the mechanisms connected to the sea ice reduction are to be explored in detail. Sea ice erodes both from the top and from the bottom. Atmosphere, sea ice and ocean processes interact in non-linear ways on various scales. Feedback mechanisms lead to an Arctic amplification of the global warming system. The amplification is both supported by the ice depletion and is at the same time accelerating the ice reduction. Knowledge of the mechanisms connected to the sea ice decline has grown during the 1990's and has deepened when the acceleration became clear in the early 2000's. Record summer sea ice extents in 2002, 2005, 2007 and 2012 provided additional information on the mechanisms. This article reviews recent progress in understanding of the sea ice decline. Processes are revisited from an atmospheric, ocean and sea ice perspective. There is strong evidence for decisive atmospheric changes being the major driver of sea ice change. Feedbacks due to reduced ice concentration, surface albedo and thickness allow for additional local atmosphere and ocean influences and self-supporting feedbacks. Large scale ocean influences on the Arctic Ocean hydrology and circulation are highly evident. Northward heat fluxes in the ocean are clearly impacting the ice margins, especially in the Atlantic sector of the Arctic. Only little indication exists for a direct decisive influence of the warming ocean on the overall sea ice cover, due to an isolating layer of cold and fresh water underneath the sea ice.


2021 ◽  
Author(s):  
Marco Morando

Abstract Climate Change is a widely debated scientific subject and Anthropogenic Global Warming is its main cause. Nevertheless, several authors have indicated solar activity and Atlantic Multi-decadal Oscillation variations may also influence Climate Change. This article considers the amplification of solar radiation’s and Atlantic Multi-decadal Oscillation’s variations, via sea ice cover albedo feedbacks in the Arctic regions, providing a conceptual advance in the application of Arctic Amplification for modelling historical climate change. A 1-dimensional physical model, using sunspot number count and Atlantic Multi-decadal Oscillation index as inputs, can simulate the average global temperature’s anomaly and the Arctic Sea Ice Extension for the past eight centuries. This model represents an innovative progress in understanding how existing studies on Arctic sea ice’s albedo feedbacks can help complementing the Anthropogenic Global Warming models, thus helping to define more precise models for future climate change.


Sign in / Sign up

Export Citation Format

Share Document