scholarly journals Snow accumulation variability derived from radar and firn core data along a 600 km transect in Adelie Land, East Antarctic plateau

2012 ◽  
Vol 6 (6) ◽  
pp. 1345-1358 ◽  
Author(s):  
D. Verfaillie ◽  
M. Fily ◽  
E. Le Meur ◽  
O. Magand ◽  
B. Jourdain ◽  
...  

Abstract. The mass balance of ice sheets is an intensively studied topic in the context of global change and sea-level rise. However – particularly in Antarctica – obtaining mass balance estimates remains difficult due to various logistical problems. In the framework of the TASTE-IDEA (Trans-Antarctic Scientific Traverses Expeditions – Ice Divide of East Antarctica) program, an International Polar Year project, continuous ground penetrating radar (GPR) measurements were carried out during a traverse in Adelie Land (East Antarctica) during the 2008–2009 austral summer between the Italian–French Dome C (DC) polar plateau site and French Dumont D'Urville (DdU) coastal station. The aim of this study was to process and interpret GPR data in terms of snow accumulation, to analyse its spatial and temporal variability and compare it with historical data and modelling. The focus was on the last 300 yr, from the pre-industrial period to recent times. Beta-radioactivity counting and gamma spectrometry were applied to cores at the LGGE laboratory, providing a depth–age calibration for radar measurements. Over the 600 km of usable GPR data, depth and snow accumulation were determined with the help of three distinct layers visible on the radargrams (≈ 1730, 1799 and 1941 AD). Preliminary results reveal a gradual increase in accumulation towards the coast (from ≈ 3 cm w.e. a−1 at Dome C to ≈ 17 cm w.e. a−1 at the end of the transect) and previously undocumented undulating structures between 300 and 600 km from DC. Results agree fairly well with data from previous studies and modelling. Drawing final conclusions on temporal variations is difficult because of the margin of error introduced by density estimation. This study should have various applications, including model validation.

2012 ◽  
Vol 6 (4) ◽  
pp. 2855-2889 ◽  
Author(s):  
D. Verfaillie ◽  
M. Fily ◽  
E. Le Meur ◽  
O. Magand ◽  
B. Jourdain ◽  
...  

Abstract. Polar ice sheets mass balance is a timely topic intensively studied in the context of global change and sea-level rise. However, obtaining mass balance estimates in Antarctica in particular, remains difficult due to various logistical problems. In the framework of the TASTE-IDEA program, labeled as an International Polar Year project, continuous Ground Penetrating Radar (GPR) measurements were carried out during a traverse realised in Adelie Land (East Antarctica) during the 2008–2009 austral summer between the Italo-French Dome C (DC) polar plateau site and French Dumont D'Urville (DdU) coastal station. The aim of this study was to process and interpret GPR data in terms of snow accumulation, to analyse its spatial and temporal variability along the DC-DdU traverse and compare it with historical data and modeling. The emphasis has been put on the last 300 yr, from the pre-industrial to recent time period. Beta-radioactivity counting and gamma spectrometry were studied in cores at LGGE laboratory, providing a depth-age calibration for radar measurements. Over the 600 km of usable GPR data, depth and snow accumulation were determined with the help of three distinct layers visible on the radargrams (≈1730, 1799 and 1941 AD). Preliminary results reveal a gradual accumulation increase towards the coast and the occurrence of previously undocumented undulating structures between 300 and 600 km from DC. Results agree fairly well with data from previous studies and modeling. Concluding on temporal variations is difficult because of the margin of error introduced by density estimation. This study should have various applications such as for model validation.


2010 ◽  
Vol 51 (55) ◽  
pp. 1-8 ◽  
Author(s):  
Karsten Müller ◽  
Anna Sinisalo ◽  
Helgard Anschütz ◽  
Svein-Erik Hamran ◽  
Jon-Ove Hagen ◽  
...  

AbstractSnow accumulation and its variability on the East Antarctic plateau are poorly understood due to sparse and regionally confined measurements. We present a 5.3 GHz (C-band) ground-penetrating radar (GPR) profile with a total length of 860 km recovered during the joint Norwegian–US International Polar Year traverse 2007/08. Mean surface mass balance (SMB) over the last 200 years was derived from the GPR data by identifying the volcanic deposition of the Tambora eruption in 1815. It varies between 9.1 and 37.7 kg m−2 a−1 over the profile, with a mean of 23.7 kg m−2 a−1 and a standard deviation of 4.7 kg m−2 a−1. The 200 year SMB estimated is significantly lower than most of the SMB estimates over shorter time periods in this region. This can be partly explained by a SMB minimum in the vicinity of the ice divide. However, it is more likely that a recent increase in SMB observed by several studies is largely responsible for the observed discrepancy.


2020 ◽  
pp. 1-10
Author(s):  
Tate G. Meehan ◽  
H. P. Marshall ◽  
John H. Bradford ◽  
Robert L. Hawley ◽  
Thomas B. Overly ◽  
...  

Abstract We present continuous estimates of snow and firn density, layer depth and accumulation from a multi-channel, multi-offset, ground-penetrating radar traverse. Our method uses the electromagnetic velocity, estimated from waveform travel-times measured at common-midpoints between sources and receivers. Previously, common-midpoint radar experiments on ice sheets have been limited to point observations. We completed radar velocity analysis in the upper ~2 m to estimate the surface and average snow density of the Greenland Ice Sheet. We parameterized the Herron and Langway (1980) firn density and age model using the radar-derived snow density, radar-derived surface mass balance (2015–2017) and reanalysis-derived temperature data. We applied structure-oriented filtering to the radar image along constant age horizons and increased the depth at which horizons could be reliably interpreted. We reconstructed the historical instantaneous surface mass balance, which we averaged into annual and multidecadal products along a 78 km traverse for the period 1984–2017. We found good agreement between our physically constrained parameterization and a firn core collected from the dry snow accumulation zone, and gained insights into the spatial correlation of surface snow density.


2008 ◽  
Vol 54 (184) ◽  
pp. 107-116 ◽  
Author(s):  
Takao Kameda ◽  
Hideaki Motoyama ◽  
Shuji Fujita ◽  
Shuhei Takahashi

AbstractThe surface mass balance (SMB) at Dome Fuji, East Antarctica, was estimated using 36 bamboo stakes (grid of 6 × 6, placed at 20 m intervals) from 1995 to 2006. The heights of the stake tops from the snow surface were measured at 0.5 cm resolution twice monthly in 1995, 1996, 1997 and 2003, and once a year for the rest of the study period. To account for snow settling, the average snow density at the stake base during the measurements was used for converting the stake-height data to SMB. The annual SMB from 1995 to 2006 at Dome Fuji was 27.3 ± 1.5 kg m−2 a−1. This result agrees well with the annual SMB from AD 1260 to 1993 (26.4 kg m−2 a−1) estimated from volcanic signals in the Dome Fuji ice core. Over the period 1995–2006, there were 37 (8.6% of the measurements) negative or zero annual SMB results. Variation in the multi-year averages of annual SMB decreased with the square root of the number of observation years, and 10 years of observations of a single stake allowed the estimation of annual SMB at ±10% accuracy. The frequency distributions of annual and monthly SMB were examined. The findings clarify the complex behavior of the annual and monthly SMB at Dome Fuji, which will be common phenomena in areas of low snow accumulation of the interior of the Antarctic ice sheet.


2002 ◽  
Vol 35 ◽  
pp. 463-470 ◽  
Author(s):  
Alison J. McMorrow ◽  
Mark A. J. Curran ◽  
Tas D. Van Ommen ◽  
Vin I. Morgan ◽  
Ian Allison

AbstractSnow-pit and shallow firn-core records of oxygen isotope ratios (δ18O) and trace ion species were generated at a high-accumulation site on Law Dome, East Antarctica. Concordance between accumulation events identified in records up to 7.7 km a part confirms that the observed glaciochemical variations are the result of regional rather than local surface effects. This allows calibration of the snow-pit records with measured meteorological parameters. Net accumulation periods that comprise the snow-pit record are identified using hourly snow-accumulation measurements from a co-located automatic weather station (AWS). Particular focus is given to three net accumulation periods preserved during austral summer 1999/2000 that correspond to the top 0.5 m of the snow pit. Local meteorological conditions recorded during the summer accumulation periods by the AWS are combined with regional and synoptic-scale meteorology derived from Casey station (110 km away) and Advanced Very High Resolution Radiometer satellite imagery to identify potential source regions for chemical signals preserved in summer snow at Law Dome.


1997 ◽  
Vol 24 ◽  
pp. 355-360 ◽  
Author(s):  
Jack Kohler ◽  
John Moore ◽  
Mike Kennett ◽  
Rune Engeset ◽  
Hallgeir Elvehøy

In traditional mass-balance measurements one estimates winter snow accumulation by identifying the depth to the previous summer’s snow or ice surface using a snow probe. This is labor-intensive and unreliable for inhomogeneous summer surfaces. Another method is to image internal reflection horizons using a ground-penetrating radar (GPR), which has advantages in speed and areal coverage over traditional probing. However, to obtain quantitative mass-balance measurements from GPR images one needs to convert the time scale to a depth scale, not a straightforward problem. We compare a GPR section with dielectric profiles and visual stratigraphy of three snow cores, manual probings, and previous mass-balance measurements. We relate changes in snow-core dielectric properties to changes in density and to the travel times of reflecting horizons in the GPR section, and correlate some of these reflecting horizons with previous summer surfaces. We conclude that GPR can be used as a complementary tool in mass-balance measurements, giving a wide areal survey of winter accumulation and net balance for preceding years. However, proper calibration is essential for identifying specific surfaces in the radar data.


1997 ◽  
Vol 24 ◽  
pp. 355-360 ◽  
Author(s):  
Jack Kohler ◽  
John Moore ◽  
Mike Kennett ◽  
Rune Engeset ◽  
Hallgeir Elvehøy

In traditional mass-balance measurements one estimates winter snow accumulation by identifying the depth to the previous summer’s snow or ice surface using a snow probe. This is labor-intensive and unreliable for inhomogeneous summer surfaces. Another method is to image internal reflection horizons using a ground-penetrating radar (GPR), which has advantages in speed and areal coverage over traditional probing. However, to obtain quantitative mass-balance measurements from GPR images one needs to convert the time scale to a depth scale, not a straightforward problem. We compare a GPR section with dielectric profiles and visual stratigraphy of three snow cores, manual probings, and previous mass-balance measurements. We relate changes in snow-core dielectric properties to changes in density and to the travel times of reflecting horizons in the GPR section, and correlate some of these reflecting horizons with previous summer surfaces. We conclude that GPR can be used as a complementary tool in mass-balance measurements, giving a wide areal survey of winter accumulation and net balance for preceding years. However, proper calibration is essential for identifying specific surfaces in the radar data.


2004 ◽  
Vol 39 ◽  
pp. 409-416
Author(s):  
Jim Hedfors ◽  
Veijo Allan Pohjola

AbstractAs part of a long-term mass-balance program run by SWEDARP since 1988, a detailed study on Plogbreen, Dronning Maud Land, Antarctica, was undertaken during the austral summer of 2003 to investigate the long-term mass balance. We compare ice outflux, φout, through a cross-sectional gate with ice influx, φin, from the upstream catchment area. The φin is based on calculations of snow accumulation upstream of the gate using data available from published ice-core records. The φout is based on Glen’s flow law aided by thermodynamic modeling and force-budget calculations. Input data from the field consist of measurements of ice surface velocity and ice geometry. The ice surface velocity was measured using repeated differential global positioning system surveying of 40 stakes over a period of 25 days. The ice geometry was determined by 174 km of ground-penetrating radar profiling using ground-based 8MHz dipole antennas. This study presents the collected velocity and geometry data as well as the calculated ice flux of Plogbreen. The results show a negatively balanced system within the uncertainty limits; φout = 0.55 ± 0.05 km3 a–1 and φin = 0.4 ± 0.1 km3 a–1. We speculate that the negative balance can be explained by recent eustatic increase reducing resistive stresses and inducing accelerated flow.


2011 ◽  
Vol 57 (204) ◽  
pp. 658-666 ◽  
Author(s):  
Ding Minghu ◽  
Xiao Cunde ◽  
Li Yuansheng ◽  
Ren Jiawen ◽  
Hou Shugui ◽  
...  

AbstractStakes at 2 km intervals were installed in January 1997 and remeasured in February 1998, January 1999, January 2005 and during the 2007/08 austral summer along a 1248 km traverse route from Zhongshan station to Dome A, East Antarctica. Based on topographical parameters, meteorological features and the records of ∼650 stakes and six stake arrays, the route is divided into five zones. We find that the snow accumulation rate decreases with increasing altitude as one progresses inland, except in the zone 800–1128 km from the coast, where the average annual accumulation rate is higher than in the zone 524–800 km from the coast. The Dome A zone (1128–1248 km) has the lowest accumulation rate (35 kg m−2 a−1, 2005–08) due to having the highest elevation and being furthest from the coast. The surface mass balance in the region 202–1128 km from the coast exhibits no temporal change from 1999–2005 to 2005–08, but there is a change in the accumulation distribution. The zone from 202 to 524 km shows a decrease in surface mass balance from 84 kg m−2 a−1 in 1999–2005 to 67 kg m−2 a−1 in 2005–08, while the zone between 800 and 1128 km shows an increase from 67 kg m−2 a−1 in 1999–2005 to 75 kg m−2 a−1 in 2005–08.


2018 ◽  
Vol 12 (11) ◽  
pp. 3617-3633 ◽  
Author(s):  
Daniel McGrath ◽  
Louis Sass ◽  
Shad O'Neel ◽  
Chris McNeil ◽  
Salvatore G. Candela ◽  
...  

Abstract. There is significant uncertainty regarding the spatiotemporal distribution of seasonal snow on glaciers, despite being a fundamental component of glacier mass balance. To address this knowledge gap, we collected repeat, spatially extensive high-frequency ground-penetrating radar (GPR) observations on two glaciers in Alaska during the spring of 5 consecutive years. GPR measurements showed steep snow water equivalent (SWE) elevation gradients at both sites; continental Gulkana Glacier's SWE gradient averaged 115 mm 100 m−1 and maritime Wolverine Glacier's gradient averaged 440 mm 100 m−1 (over > 1000 m). We extrapolated GPR point observations across the glacier surface using terrain parameters derived from digital elevation models as predictor variables in two statistical models (stepwise multivariable linear regression and regression trees). Elevation and proxies for wind redistribution had the greatest explanatory power, and exhibited relatively time-constant coefficients over the study period. Both statistical models yielded comparable estimates of glacier-wide average SWE (1 % average difference at Gulkana, 4 % average difference at Wolverine), although the spatial distributions produced by the models diverged in unsampled regions of the glacier, particularly at Wolverine. In total, six different methods for estimating the glacier-wide winter balance average agreed within ±11 %. We assessed interannual variability in the spatial pattern of snow accumulation predicted by the statistical models using two quantitative metrics. Both glaciers exhibited a high degree of temporal stability, with ∼85 % of the glacier area experiencing less than 25 % normalized absolute variability over this 5-year interval. We found SWE at a sparse network (3 stakes per glacier) of long-term glaciological stake sites to be highly correlated with the GPR-derived glacier-wide average. We estimate that interannual variability in the spatial pattern of winter SWE accumulation is only a small component (4 %–10 % of glacier-wide average) of the total mass balance uncertainty and thus, our findings support the concept that sparse stake networks effectively measure interannual variability in winter balance on glaciers, rather than some temporally varying spatial pattern of snow accumulation.


Sign in / Sign up

Export Citation Format

Share Document