scholarly journals Local Correlation-based Transition Models for High-Reynolds-Number Wind Turbine Airfoils

2021 ◽  
Author(s):  
Yong Su Jung ◽  
Ganesh Vijayakumar ◽  
Shreyas Ananthan ◽  
James Baeder

Abstract. Modern wind-turbine airfoil design requires robust performance predictions for varying thicknesses, shapes, and appropriate Reynolds numbers. The airfoils of current large offshore wind turbines operate with chord-based Reynolds numbers in the range of 3–15 million. Turbulence transition in the airfoil boundary layer is known to play an important role in the aerodynamics of these airfoils near the design operating point. While the lack of prediction of lift stall through Reynold-averaged Navier-Stokes (RANS) computational fluid dynamics (CFD) is well-known, airfoil design using CFD requires the accurate prediction of the glide ratio (L / D) in the linear portion of the lift polar. The prediction of the drag bucket and the glide ratio is greatly affected by the choice of the transition model in RANS-CFD of airfoils. We present the performance of two existing local correlation-based transition models – one-equation (γ) and two-equation model coupled with the Spalart-Allmaras (SA) RANS turbulence model – for offshore wind-turbine airfoils operating at a high Reynolds number. We compare the predictions of the two transition models with available experimental and CFD data in the literature in the Reynolds number range of 3–15 million including the AVATAR project measurements of the DU00-W-212 airfoil. Both transition models predict a larger L / D compared to fully turbulent results at all Reynolds numbers. The two models exhibit similar behavior at Reynolds numbers around 3 million. However, at higher Reynolds numbers, the one-equation model fails to predict the natural transition behavior due to early transition onset. The two-equation transition model predicts the aerodynamic coefficients for airfoils of various thickness at higher Reynolds numbers up to 15 million more accurately compared to the one-equation model. The two-equation model also predicts the correct trends with the variation of Reynolds number comparable to the eN transition model. However, a limitation of this model is observed at very high Reynolds numbers of around 12–15 million where the predictions are very sensitive to the inflow turbulent intensity. The combination of the transition model coupled with the Spalart-Allmaras (SA) RANS turbulence model is a robust method for performance prediction of modern wind-turbine airfoils using CFD.

2014 ◽  
Vol 524 ◽  
pp. 012012 ◽  
Author(s):  
E Llorente ◽  
A Gorostidi ◽  
M Jacobs ◽  
W A Timmer ◽  
X Munduate ◽  
...  

Author(s):  
Samuel Cole ◽  
Gavin Hess ◽  
Martin Wosnik

A research wind turbine of one meter diameter was designed for the UNH Flow Physics Facility (FPF), a very large flow physics quality turbulent boundary layer wind tunnel (W 6m, H 2.7m, L 72m), which provides excellent spatial and temporal resolution, low flow blockage and allows measurements of turbine wakes far downstream due its long fetch. The initial turbine design was carried out as an aero-servo model of the NREL 5MW reference turbine, with subsequent modifications to both the hub to accommodate blade mounting and pitch-adjustment, and increases in model blade chord to achieve sufficiently high Reynolds numbers. A trade-off study of turbine design parameters in scale space was conducted. Several candidate airfoil profiles were evaluated numerically with the goal to reach Reynolds-number independence in turbine performance in the target operating range. The model turbine will achieve Reynolds numbers based on blade chord, an important consideration for airfoil performance and near-wake evolution, greater than 100,000, and Reynolds numbers based on turbine diameter, important for far-wake transport, on the order of 1,000,000. The blockage ratio is less than 5% based on swept area. A motor and controller combination was implemented that allows to precisely prescribe the turbine tip-speed ratio (at maximum power coefficient for optimum blade chord), which can remain stable and absorb the generated electric power for long periods of time. The turbine nacelle was designed with a blade mounting mechanism which allows for precise manual adjustment of blade pitch angle, while allowing for future implementation of actuated pitch control. The O(1m) turbine scale is viewed as a cost-effective compromise between size, driven by the need for sufficiently high Reynolds number, and the need for detailed measurements for significant distances downstream of the turbine under controlled conditions.


2018 ◽  
Vol 844 ◽  
pp. 707-720 ◽  
Author(s):  
Mark A. Miller ◽  
Subrahmanyam Duvvuri ◽  
Ian Brownstein ◽  
Marcus Lee ◽  
John O. Dabiri ◽  
...  

Laboratory experiments were performed on a geometrically scaled vertical-axis wind turbine model over an unprecedented range of Reynolds numbers, including and exceeding those of the full-scale turbine. The study was performed in the high-pressure environment of the Princeton High Reynolds number Test Facility (HRTF). Utilizing highly compressed air as the working fluid enabled extremely high Reynolds numbers while still maintaining dynamic similarity by matching the tip speed ratio (defined as the ratio of tip velocity to free stream, $\unicode[STIX]{x1D706}=\unicode[STIX]{x1D714}R/U$) and Mach number (defined at the turbine tip, $Ma=\unicode[STIX]{x1D714}R/a$). Preliminary comparisons are made with measurements from the full-scale field turbine. Peak power for both the field data and experiments resides around $\unicode[STIX]{x1D706}=1$. In addition, a systematic investigation of trends with Reynolds number was performed in the laboratory, which revealed details about the asymptotic behaviour. It was shown that the parameter that characterizes invariance in the power coefficient was the Reynolds number based on blade chord conditions ($Re_{c}$). The power coefficient reaches its asymptotic value when $Re_{c}>1.5\times 10^{6}$, which is higher than what the field turbine experiences. The asymptotic power curve is found, which is invariant to further increases in Reynolds number.


2021 ◽  
Vol 62 (3) ◽  
Author(s):  
Nils Paul van Hinsberg

Abstract The aerodynamics of smooth and slightly rough prisms with square cross-sections and sharp edges is investigated through wind tunnel experiments. Mean and fluctuating forces, the mean pitch moment, Strouhal numbers, the mean surface pressures and the mean wake profiles in the mid-span cross-section of the prism are recorded simultaneously for Reynolds numbers between 1$$\times$$ × 10$$^{5}$$ 5 $$\le$$ ≤ Re$$_{D}$$ D $$\le$$ ≤ 1$$\times$$ × 10$$^{7}$$ 7 . For the smooth prism with $$k_s$$ k s /D = 4$$\times$$ × 10$$^{-5}$$ - 5 , tests were performed at three angles of incidence, i.e. $$\alpha$$ α = 0$$^{\circ }$$ ∘ , −22.5$$^{\circ }$$ ∘ and −45$$^{\circ }$$ ∘ , whereas only both “symmetric” angles were studied for its slightly rough counterpart with $$k_s$$ k s /D = 1$$\times$$ × 10$$^{-3}$$ - 3 . First-time experimental proof is given that, within the accuracy of the data, no significant variation with Reynolds number occurs for all mean and fluctuating aerodynamic coefficients of smooth square prisms up to Reynolds numbers as high as $$\mathcal {O}$$ O (10$$^{7}$$ 7 ). This Reynolds-number independent behaviour applies to the Strouhal number and the wake profile as well. In contrast to what is known from square prisms with rounded edges and circular cylinders, an increase in surface roughness height by a factor 25 on the current sharp-edged square prism does not lead to any notable effects on the surface boundary layer and thus on the prism’s aerodynamics. For both prisms, distinct changes in the aerostatics between the various angles of incidence are seen to take place though. Graphic abstract


1956 ◽  
Vol 60 (541) ◽  
pp. 67-70
Author(s):  
T. A. Thomson

The blow-down type of intermittent, supersonic tunnel is attractive because of its simplicity and because relatively high Reynolds numbers can be obtained for a given size of test section. An adverse characteristic, however, is the fall of stagnation temperature during runs, which can affect experiments in several ways. The Reynolds number varies and the absolute velocity is not constant, even if the Mach number and pressure are; heat-transfer cannot be studied under controlled conditions and the experimental errors arising from the effect of heat-transfer on the boundary layer vary in time. These effects can become significant in quantitative experiments if the tunnel is large and the variation of temperature very rapid; the expense required to eliminate them might then be justified.


Author(s):  
Amir Hossein Birjandi ◽  
Eric Bibeau

A four-bladed, squirrel-cage, and scaled vertical kinetic turbine was designed, instrumented and tested in the water tunnel facilities at the University of Manitoba. With a solidity of 1.3 and NACA0021 blade profile, the turbine is classified as a high solidity model. Results were obtained for conditions during freewheeling at various Reynolds numbers. In this study, the freewheeling tip speed ratio, which relates the ratio of maximum blade speed to the free stream velocity at no load, was divided into three regions based on the Reynolds number. At low Reynolds numbers, the tip speed ratio was lower than unity and blades were in a stall condition. At the end of the first region, there was a sharp increase of the tip speed ratio so the second region has a tip speed ratio significantly higher than unity. In this region, the tip speed ratio increases almost linearly with Reynolds number. At high Reynolds numbers, the tip speed ratio is almost independent of Reynolds number in the third region. It should be noted that the transition between these three regions is a function of the blade profile and solidity. However, the three-region behavior is applicable to turbines with different profiles and solidities.


1999 ◽  
Vol 395 ◽  
pp. 211-236 ◽  
Author(s):  
V. SHANKAR ◽  
V. KUMARAN

Flows with velocity profiles very different from the parabolic velocity profile can occur in the entrance region of a tube as well as in tubes with converging/diverging cross-sections. In this paper, asymptotic and numerical studies are undertaken to analyse the temporal stability of such ‘non-parabolic’ flows in a flexible tube in the limit of high Reynolds numbers. Two specific cases are considered: (i) developing flow in a flexible tube; (ii) flow in a slightly converging flexible tube. Though the mean velocity profile contains both axial and radial components, the flow is assumed to be locally parallel in the stability analysis. The fluid is Newtonian and incompressible, while the flexible wall is modelled as a viscoelastic solid. A high Reynolds number asymptotic analysis shows that the non-parabolic velocity profiles can become unstable in the inviscid limit. This inviscid instability is qualitatively different from that observed in previous studies on the stability of parabolic flow in a flexible tube, and from the instability of developing flow in a rigid tube. The results of the asymptotic analysis are extended numerically to the moderate Reynolds number regime. The numerical results reveal that the developing flow could be unstable at much lower Reynolds numbers than the parabolic flow, and hence this instability can be important in destabilizing the fluid flow through flexible tubes at moderate and high Reynolds number. For flow in a slightly converging tube, even small deviations from the parabolic profile are found to be sufficient for the present instability mechanism to be operative. The dominant non-parallel effects are incorporated using an asymptotic analysis, and this indicates that non-parallel effects do not significantly affect the neutral stability curves. The viscosity of the wall medium is found to have a stabilizing effect on this instability.


Author(s):  
Jiasen Hu ◽  
Torsten H. Fransson

A numerical study has been performed to compare the overall performance of three transition models when used with an industrial Navier-Stokes solver. The three models investigated include two experimental correlations and an integrated eN method. Twelve test cases in realistic turbomachinery flow conditions have been calculated. The study reveals that all the three models can work numerically well with an industrial Navier-Stokes code, but the prediction accuracy of the models depends on flow conditions. In general, all the three models perform comparably well to predict the transition in weak or moderate adverse pressure-gradient regions. The two correlations have the merit if the transition starts in strong favorable pressure-gradient region under high Reynolds number condition. But only the eN method works well to predict the transition controlled by strong adverse pressure gradients. The three models also demonstrate different capabilities to model the effects of turbulence intensity and Reynolds number.


Author(s):  
Takahiro Ishida ◽  
Takahiro Tsukahara

We performed direct numerical simulations of annular Poiseuille flow (APF) with a radius ratio of η (= rin/rout) = 0.8, in order to investigate the subcritical transition scenario from the developed turbulent state to the laminar state. In previous studies on annular Poiseuille flow, the flows at high Reynolds numbers were well examined and various turbulence statistics were obtained for several η, because of their dependence on η. Since the transitional APF is still unclear, we investigate annular Poiseuille flows in the transitional regime through the large-domain simulations in a range of the friction Reynolds number from Reτ = 150 down to 56. At a transitional Reynolds number, weak-fluctuation regions occur intermittently and regularly in the flow field, and the localized turbulence appears in the form of banded patterns same as in plane Poiseuille flow (PPF). The flow system of APF with a high radius ratio η ≈ 1 can be regarded as PPF and, hence, the transition regime in high radius-ratio of APF and in PPF should be analogous. However, in APF, the banded structure takes on helical shape around the inner cylinder, since APF is a closed system in the spanwise (azimuthal) direction. In this paper, the (dis-)similarity between APF and PPF is discussed.


Sign in / Sign up

Export Citation Format

Share Document