scholarly journals Turbulence in a coastal environment: the case of Vindeby

2021 ◽  
Author(s):  
Rieska Mawarni Putri ◽  
Etienne Cheynet ◽  
Charlotte Obhrai ◽  
Jasna Bogunovic Jakobsen

Abstract. Turbulence spectral characteristics for various atmospheric stratifications are studied using the observations from an offshore mast at Vindeby wind farm. Measurement data at 6 m, 18 m and 45 m above the mean sea level are considered. At the lowest height, the normalized power spectral densities of the velocity components show deviations from Monin-Obukhov similarity theory (MOST). A significant co-coherence at the wave spectral peak frequency between the vertical velocity component and the velocity of the sea surface is observed, but only when the significant wave heights exceed 0.9 m. The turbulence spectra at 18 m generally follow MOST and are consistent with the empirical spectra established on the FINO1 offshore platform from an earlier study. The data at 45 m is associated with a high-frequency measurement noise which limits its analysis to strong wind conditions only. The estimated co-coherence of the along-wind component under near-neutral atmosphere matches remarkably well with those at FINO1. The turbulence characteristics estimated from the present dataset are valuable to better understand the structure of turbulence in the marine atmospheric boundary layer and are relevant for load estimations of offshore wind turbines. Yet, a direct application of the results to other offshore or coastal sites should be exercised with caution, since the dataset is collected in shallow waters and at heights lower than the hub height of the current and the future state-of-the-art offshore wind turbines.

Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7576
Author(s):  
Maximilian Henkel ◽  
Wout Weijtjens ◽  
Christof Devriendt

The design of monopile foundations for offshore wind turbines is most often driven by fatigue. With the foundation price contributing to the total price of a turbine structure by more than 30%, wind farm operators seek to gain knowledge about the amount of consumed fatigue. Monitoring concepts are developed to uncover structural reserves coming from conservative designs in order to prolong the lifetime of a turbine. Amongst promising concepts is a wide array of methods using in-situ measurement data and extrapolating these results to desired locations below water surface and even seabed using models. The modal decomposition algorithm is used for this purpose. The algorithm obtains modal amplitudes from acceleration and strain measurements. In the subsequent expansion step these amplitudes are expanded to virtual measurements at arbitrary locations. The algorithm uses a reduced order model that can be obtained from either a FE model or measurements. In this work, operational modal analysis is applied to obtain the required stress and deflection shapes for optimal validation of the method. Furthermore, the measurements that are used as input for the algorithms are constrained to measurements from the dry part of the substructure. However, with subsoil measurement data available from a dedicated campaign, even validation for locations below mud-line is possible. After reconstructing strain history in arbitrary locations on the substructure, fatigue assessment over various environmental and operational conditions is carried out. The technique is found capable of estimating fatigue with high precision for locations above and below seabed.


Author(s):  
Jose´ G. Rangel-Rami´rez ◽  
John D. So̸rensen

Deterioration processes such as fatigue and corrosion are typically affecting offshore structures. To “control” this deterioration, inspection and maintenance activities are developed. Probabilistic methodologies represent an important tool to identify the suitable strategy to inspect and control the deterioration in structures such as offshore wind turbines (OWT). Besides these methods, the integration of condition monitoring information (CMI) can optimize the mitigation activities as an updating tool. In this paper, a framework for risk-based inspection and maintenance planning (RBI) is applied for OWT incorporating CMI, addressing this analysis to fatigue prone details in welded steel joints at jacket or tripod steel support structures for offshore wind turbines. The increase of turbulence in wind farms is taken into account by using a code-based turbulence model. Further, additional modes t integrate CMI in the RBI approach for optimal planning of inspection and maintenance. As part of the results, the life cycle reliabilities and inspection times are calculated, showing that earlier inspections are needed at in-wind farm sites. This is expected due to the wake turbulence increasing the wind load. With the integration of CMI by means Bayesian inference, a slightly change of first inspection times are coming up, influenced by the reduction of the uncertainty and harsher or milder external agents.


2021 ◽  
Vol 6 (4) ◽  
pp. 50
Author(s):  
Payam Teimourzadeh Baboli ◽  
Davood Babazadeh ◽  
Amin Raeiszadeh ◽  
Susanne Horodyvskyy ◽  
Isabel Koprek

With the increasing demand for the efficiency of wind energy projects due to challenging market conditions, the challenges related to maintenance planning are increasing. In this paper, a condition-based monitoring system for wind turbines (WTs) based on data-driven modeling is proposed. First, the normal condition of the WTs key components is estimated using a tailor-made artificial neural network. Then, the deviation of the real-time measurement data from the estimated values is calculated, indicating abnormal conditions. One of the main contributions of the paper is to propose an optimization problem for calculating the safe band, to maximize the accuracy of abnormal condition identification. During abnormal conditions or hazardous conditions of the WTs, an alarm is triggered and a proposed risk indicator is updated. The effectiveness of the model is demonstrated using real data from an offshore wind farm in Germany. By experimenting with the proposed model on the real-world data, it is shown that the proposed risk indicator is fully consistent with upcoming wind turbine failures.


Energies ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 882 ◽  
Author(s):  
Hongyan Ding ◽  
Zuntao Feng ◽  
Puyang Zhang ◽  
Conghuan Le ◽  
Yaohua Guo

The composite bucket foundation (CBF) for offshore wind turbines is the basis for a one-step integrated transportation and installation technique, which can be adapted to the construction and development needs of offshore wind farms due to its special structural form. To transport and install bucket foundations together with the upper portion of offshore wind turbines, a non-self-propelled integrated transportation and installation vessel was designed. In this paper, as the first stage of applying the proposed one-step integrated construction technique, the floating behavior during the transportation of CBF with a wind turbine tower for the Xiangshui wind farm in the Jiangsu province was monitored. The influences of speed, wave height, and wind on the floating behavior of the structure were studied. The results show that the roll and pitch angles remain close to level during the process of lifting and towing the wind turbine structure. In addition, the safety of the aircushion structure of the CBF was verified by analyzing the measurement results for the interaction force and the depth of the liquid within the bucket. The results of the three-DOF (degree of freedom) acceleration monitoring on the top of the test tower indicate that the wind turbine could meet the specified acceleration value limits during towing.


Author(s):  
Konstantinos Gryllias ◽  
Junyu Qi ◽  
Alexandre Mauricio ◽  
Chenyu Liu

Abstract The current pace of renewable energy development around the world is unprecedented, with offshore wind in particular proving to be an extremely valuable and reliable energy source. The global installed capacity of offshore wind turbines by the end of 2022 is expected to reach the 46.4 GW, among which 33.9 GW in Europe. Costs are critical for the future success of the offshore wind sector. The industry is pushing hard to make cost reductions to show that offshore wind is economically comparable to conventional fossil fuels. Efficiencies in Operations and Maintenance (O&M) offer potential to achieve significant cost savings as it accounts for around 20%–30% of overall offshore wind farm costs. One of the most critical and rather complex assembly of onshore, offshore and floating wind turbines is the gearbox. Gearboxes are designed to last till the end of the lifetime of the asset, according to the IEC 61400-4 standards. On the other hand, a recent study over approximately 350 offshore wind turbines indicate that gearboxes might have to be replaced as early as 6.5 years. Therefore sensing and condition monitoring systems for onshore, offshore and floating wind turbines are needed in order to obtain reliable information on the state and condition of different critical parts, focusing towards the detection and/or prediction of damage before it reaches a critical stage. The development and use of such technologies will allow companies to schedule actions at the right time, and thus will help reducing the costs of operation and maintenance, resulting in an increase of wind energy at a competitive price and thus strengthening productivity of the wind energy sector. At the academic level a plethora of methodologies have been proposed during the last decades for the analysis of vibration signatures focusing towards early and accurate fault detection with limited false alarms and missed detections. Among others, Envelope Analysis is one of the most important methodologies, where an envelope of the vibration signal is estimated, usually after filtering around a selected frequency band excited by impacts due to the faults. Different tools, such as Kurtogram, have been proposed in order to accurately select the optimum filter parameters (center frequency and bandwidth). Cyclostationary Analysis and corresponding methodologies, i.e. the Cyclic Spectral Correlation and the Cyclic Spectral Coherence, have been proved as powerful tools for condition monitoring. On the other hand the application, test and evaluation of such tools on general industrial cases is still rather limited. Therefore the main aim of this paper is the application and evaluation of advanced diagnostic techniques and diagnostic indicators, including the Enhanced Envelope Spectrum and the Spectral Flatness on real world vibration data collected from vibration sensors on gearboxes in multiple wind turbines over an extended period of time of nearly four years. The diagnostic indicators are compared with classical statistic time and frequency indicators, i.e. Kurtosis, Crest Factor etc. and their effectiveness is evaluated based on the successful detection of two failure events.


2020 ◽  
Vol 10 (21) ◽  
pp. 7579
Author(s):  
Zhaoyao Wang ◽  
Ruigeng Hu ◽  
Hao Leng ◽  
Hongjun Liu ◽  
Yifan Bai ◽  
...  

The displacement of monopile supporting offshore wind turbines needs to be strictly controlled, and the influence of local scour can not be ignored. Using p–y curves to simulate the pile–soil interaction and the finite difference method to calculate iteratively, a numerical frame for analysis of lateral loaded pile was discussed and then verified. On the basis of the field data from Dafeng Offshore Wind Farm in Jiangsu Province, the local scour characteristics of large diameter monopile were concluded, and a new method of considering scour effect applicable to large diameter monopile was put forward. The results show that, for scour of large diameter monopiles, there was no obvious scour pit, but local erosion and deposition. Under the test conditions, the displacement errors between the proposed and traditional method were 46.4%. By the proposed method, the p–y curves of monopile considering the scour effect were obtained through ABAQUS, and the deformation of large diameter monopile under scour was analyzed by the proposed frame. The results show that, with the increase of scour depth, the horizontal displacement of the pile head increases nonlinearly, the depth of rotation point moves downward, and both of the changes are related to the load level. Under the test conditions, the horizontal displacement of the pile head after scour could reach 1.4~3.6 times of that before scour. Finally, for different pile parameters, the pile head displacement was compared, and further, the susceptibility to scour was quantified by a proposed concept of scour sensitivity. The analysis indicates that increasing pile length is a more reasonable way than pile diameter and wall thickness to limit the scour effect on the displacement of large diameter pile.


Author(s):  
Z. Lin ◽  
D. Cevasco ◽  
M. Collu

Currently, around 1500 offshore wind turbines are operating in the UK, for a total of 5.4GW, with further 3GW under construction, and 13GW consented. Until now, the focus of the research on offshore wind turbines has been mainly on how to minimise the CAPEX, but Operation and maintenance (O&M) can represent up to 39% of the lifetime costs of an offshore wind farm, due mainly to the high cost of the assets and the harsh environment, limiting the access to these assets in a safe mode. The present work is a part of a larger project, called HOME Offshore (www.homeoffshore.org), and it has as aim an advanced interpretation of the fault mechanisms through a holistic multiphysics modelling of the wind farm. The first step (presented here) toward achieving this aim consists of two main tasks: first of all, to identify and rank the most relevant failure modes within a wind farm, identifying the component, its mode of failure, and the relative environmental conditions. Then, to assess (for each failure mode) how the full-order, nonlinear model of dynamics used to represent the dynamics of the wind turbine can be reduced in order, such that is less computationally expensive (and therefore more suitable to be scaled up to represent multiple wind turbines), but still able to capture and represent the relevant dynamics linked with the inception of the chosen failure mode. A methodology to rank the failure modes is presented, followed by an approach to reduce the order of the Aero-Hydro-Servo-Elastic (AHSE) model of dynamics adopted. The results of the proposed reduced-order models are discussed, comparing it against the full-order coupled model, and taking as case study a fixed offshore wind turbine (monopile) in gearbox failure condition.


Author(s):  
Spencer T. Hallowell ◽  
Sanjay R. Arwade ◽  
Brian D. Diaz ◽  
Charles P. Aubeny ◽  
Casey M. Fontana ◽  
...  

Abstract One of many barriers to the deployment of floating offshore wind turbines is the high cost of vessel time needed for soil investigations and anchor installation. A multiline anchor system is proposed in which multiple floating offshore wind turbines (FOWTs) are connected to a single caisson. The connection of multiple FOWTs to a single anchor introduces interconnectedness throughout the wind farm. Previous work by the authors has shown that this interconnectedness reduces the reliability of the FOWT below an acceptable level when exposed to survival loading conditions. To combat the reduction in system reliability an overstrength factor (OSF) is applied to the anchors functioning as an additional safety factor. For a 100 turbine wind farm, single-line system reliabilities can be achieved using the multiline system with an OSF of 1.10, a 10% increase in multiline anchor safety factors for all anchors in a farm.


2017 ◽  
Vol 17 (5) ◽  
pp. 1313-1330 ◽  
Author(s):  
Karsten Schröder ◽  
Cristian Guillermo Gebhardt ◽  
Raimund Rolfes

This article introduces a new adaptive two-step optimization algorithm for finite element model updating with special emphasis on damage localization at supporting structures of offshore wind turbines. The algorithm comprises an enhanced version of the global optimization algorithm simulated annealing, the simulated quenching method that approximates an initial guess of damage localization. Subsequently, sequential quadratic programming is used to compute the final solution adaptively. For the correlation of numerical model and measurement data, both a measure based on eigenfrequencies and mode shapes and a measure employing time series are implemented and compared with respect to their performance for damage localization. Phase balance of the time signals is achieved using cross-correlation. The localization problem is stated as a minimization problem in which the measures are used in time and modal domain as the objective function subject to constraints. Furthermore, the objective function value of the adjusted model is used to distinguish correct from wrong solutions. The functionality is proven using a numerical model of a monopile structure with simulated damage and a lab-scaled model of a tripile structure with real damage.


2013 ◽  
Vol 448-453 ◽  
pp. 1871-1874
Author(s):  
Yuan Xie

China has great potential in offshore wind energy and makes an ambitious target for offshore wind power development. Operation and Maintenance (O&M) of offshore wind turbines become more and more important for China wind industry. This study introduces the current offshore wind power projects in China. Donghai Bridge Offshore Demonstration Wind Farm (Donghai Bridge Project) is the first commercial offshore wind power project in China, which was connected to grid in June 2010. O&M of Donghai Bridge Project represent the state-of-the-art of China offshore O&M. During the past two and half years, O&M of Donghai Bridge Project has gone through three phases and stepped into a steady stage. Its believed that analysis of O&M of Donghai Bridge Project is very helpful for Chinas offshore wind power in the future.


Sign in / Sign up

Export Citation Format

Share Document