New Thermoplastic Elastomers from Poly(Ethylene-Octene) (Engage), Poly(Ethylene-Vinyl Acetate) and Low-Density Polyethylene by Electron Beam Technology: Structural Characterization and Mechanical Properties
Abstract New thermoplastic elastomers have been prepared from the blends of metallocene-based polyolefins (Engage) with low-density polyethylene (LDPE), and ethylene-vinyl acetate copolymers (EVA) of different grades with LDPE by electron beam modification. Structural changes of these blends with or without sensitizer in presence of irradiation have been evaluated by X-ray diffraction (XRD) and differential scanning calorimetry (DSC). Scanning electron microscopy (SEM) in conjunction with atomic force microscopy (AFM) indicate the soft rubber domain in the continuous plastic matrix. Significant improvements of mechanical, dynamic mechanical and set properties have been obtained by electron beam modification, retaining its reprocessibility characteristics. Effects of ditrimethylol propane tetraacrylate (DTMPTA) as radiation sensitizer have also been evaluated from the mechanical, dynamic mechanical properties and reprocessibility.