scholarly journals HydroPower Plant Planning for Resilience Improvement of Power Systems using Fuzzy-Neural based Genetic Algorithm

Author(s):  
Akbal Rain ◽  
Mert Emre Saritac ◽  
◽  
1996 ◽  
Vol 116 (2) ◽  
pp. 99-111 ◽  
Author(s):  
Hiroumi Saitoh ◽  
Yutaka Takano ◽  
Junichi Toyoda

2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
K. Vijayakumar

Congestion management is one of the important functions performed by system operator in deregulated electricity market to ensure secure operation of transmission system. This paper proposes two effective methods for transmission congestion alleviation in deregulated power system. Congestion or overload in transmission networks is alleviated by rescheduling of generators and/or load shedding. The two objectives conflicting in nature (1) transmission line over load and (2) congestion cost are optimized in this paper. The multiobjective fuzzy evolutionary programming (FEP) and nondominated sorting genetic algorithm II methods are used to solve this problem. FEP uses the combined advantages of fuzzy and evolutionary programming (EP) techniques and gives better unique solution satisfying both objectives, whereas nondominated sorting genetic algorithm (NSGA) II gives a set of Pareto-optimal solutions. The methods propose an efficient and reliable algorithm for line overload alleviation due to critical line outages in a deregulated power markets. The quality and usefulness of the algorithm is tested on IEEE 30 bus system.


2014 ◽  
Vol 651-653 ◽  
pp. 1117-1122
Author(s):  
Zheng Ning Fu ◽  
Hong Wen Xie

Wind speed forecasting plays a significant role to the operation of wind power plants and power systems. An accurate forecasting on wind power can effectively relieve or avoid the negative impact of wind power plants on power systems and enhance the competition of wind power plants in electric power market. Based on a fuzzy neural network (FNN), a method of wind speed forecasting is presented in this paper. By mining historical data as the learning stylebook, the fuzzy neural network (FNN) forecasts the wind speed. The simulation results show that this method can improve the accuracy of wind speed forecasting effectively.


Sign in / Sign up

Export Citation Format

Share Document