scholarly journals Novel models for obtaining the closest weak and strong efficient projections in data envelopment analysis

2021 ◽  
Vol 39 (5) ◽  
pp. 9-24
Author(s):  
Javad Vakili ◽  
Hanieh Amirmoshiri ◽  
Mir Kamal Mirnia

Data Envelopment Analysis (DEA) is a nonparametric method for measuring the relative efficiency and performance of Decision Making Units (DMUs). Traditionally, there are two issues regarding the DEA simultaneously i.e., the identification of a reference point on the efficient boundary of the production possibility set (PPS) and the use of some measures of distance from the unit under assessment to the efficient frontier. Due to its importance, in this paper, two alternative target setting models were developed to allow for lowefficient DMUs find the easiest way to improve its efficiency and reach to the efficient boundary. One seeks the closest weak efficient projection and the other suggests the most appropriate direction towards the strong efficient frontier surface. Both of these models provides the closest projection in one stage. Finally, a proposed problem is empirically checked by using a recent data related to 30 European airports.

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Chao Lu ◽  
Haifang Cheng

Data envelopment analysis (DEA) is a nonparametric method for evaluating the relative efficiency of a set of decision-making units (DMUs) with multiple inputs and outputs. As an extension of the DEA, a multiplicative two-stage DEA model has been widely used to measure the efficiencies of two-stage systems, where the first stage uses inputs to produce the outputs, and the second stage then uses the first-stage outputs as inputs to generate its own outputs. The main deficiency of the multiplicative two-stage DEA model is that the decomposition of the overall efficiency may not be unique because of the presence of alternate optima. To remove the problem of the flexible decomposition, in this paper, we maximize the sum of the two-stage efficiencies and simultaneously maximize the two-stage efficiencies as secondary goals in the multiplicative two-stage DEA model to select the decomposition of the overall efficiency from the flexible decompositions, respectively. The proposed models are applied to evaluate the performance of 10 branches of China Construction Bank, and the results are compared with the results of the existing models.


Author(s):  
Chandra Sekhar Patro

In the present competitive business environment, it is essential for the management of any organisation to take wise decisions regarding supplier evaluation. It plays a vital role in establishing an effective supply chain for any organisation. Most of the experts agreed that there is no one best way to evaluate the suppliers and different organizations use different approaches for evaluating supplier efficiency. The overall objective of any approach is to reduce purchase risk and maximize overall value to the purchaser. In this paper Data Envelopment Analysis (DEA) technique is developed to evaluate the supplier efficiency for an organisation. DEA is a multifactor productivity technique to measure the relative efficiency of the decision making units. The super efficiency method of DEA provides a way, which indicates the extent to which the efficient suppliers exceed the efficient frontier formed by other efficient suppliers. A case study is undertaken to evaluate the supplier performance and efficiency using DEA approach.


2017 ◽  
Vol 34 (06) ◽  
pp. 1750035
Author(s):  
J. Vakili

In data envelopment analysis (DEA), calculating the distances of decision making units (DMUs) from the weak efficient boundary of a production possibility set (PPS) is a very important subject which has attracted increasing interest of researchers in recent years. The distances of DMUs to the weak efficient boundary of the PPS can be used to evaluate the performance of DMUs, obtain the closest efficient patterns and also assess the sensitivity and stability of efficiency classifications in DEA. The present study proposes some new models which compute the distances of DMUs from the weak efficient boundary of a PPS for both convex and nonconvex PPSs using Hölder norms. In fact, the presented models assist a DMU to improve its performance by an appropriate movement towards the weak efficient boundary.


Author(s):  
Mohammad Khoveyni ◽  
Robabeh Eslami

Finding efficiency regions (ERs) for extremely efficient decision-making units (DMUs) is one of the important issues from the managerial and economic viewpoints. An extremely efficient DMU will remain efficient if and only if after changing its inputs and/or its outputs this DMU stays within its ER. Thus, by applying the ER information, decision maker(s) of the evaluated extremely efficient DMU can precisely understand the values of input(s) increment and output(s) decrement of this DMU so that it remains efficient. Hence, in this study, we propose a data envelopment analysis (DEA) approach based on the defining hyperplanes of the production possibility set (PPS), which is capable of finding the ERs of the DMUs when their inputs increase and/or their outputs decrease. To demonstrate the applicability of the proposed approach, in the real world, a numerical example and an empirical application to the banking industry in the Czech Republic are provided.


Author(s):  
QUANLING WEI ◽  
HONG YAN

Most of evaluation methods on large number of candidates are based a single criterion. To bring the multiple attribute evaluation method Data Envelopment Analysis (DEA) into evaluating large number of elements, it needs to set up the performance standards and an evaluation procedure by the DEA model. In this paper, we first determine a set of "standard" candidates, called in decision making units (DMUs) in the DEA terminology. This standard set is called "training set". We then establish the evaluation procedure based on this "training set" for measuring a large number of DMUs. We first investigate the efficiency evaluation of a new DMU along with the original definition based on the sum formed production possibility set which is formed by the n DMUs in the training set and the new DMU. We then identify the intersection form of the production possibility set formed only by the n DMUs from the training set. And show that the new DMU evaluation is simply to check if the DMU satisfies a set of linear inequalities. The intersection formed production possibility set formed by the n DMUs from the training set is fixed for evaluating any new DMU. Therefore, it provides an efficient and effective method for dealing with a large amount of data. The method can be regarded as a complementary approach for data mining.


2011 ◽  
Vol 2011 ◽  
pp. 1-17 ◽  
Author(s):  
I. Seidl ◽  
M. Sommersguter-Reichmann

During the last four decades Data Envelopment Analysis (DEA) has attracted considerable attention in the OR community. Using DEA, the efficiency frontier is constructed based on assumptions concerning the production possibility set rather than a priori defining a functional relationship between inputs and outputs. In this contribution, we propose an algorithm to visualize the efficiency surface in a 3D diagram and to extract isoquants from the efficient hull based on different RTS assumptions which might be particularly helpful for presentation purposes. In doing so, we extend the existing literature which has concentrated on the visualization of production frontiers in 2D diagrams to the visualization of efficient rather than fully efficient hulls in 3D diagrams. Displaying a fully efficient hull, however, does not reflect all properties of the production possibility set as weakly efficient frontier segments are missing.


2011 ◽  
Vol 50 (4II) ◽  
pp. 685-698
Author(s):  
Samina Khalil

This paper aims at measuring the relative efficiency of the most polluting industry in terms of water pollution in Pakistan. The textile processing is country‘s leading sub sector in textile manufacturing with regard to value added production, export, employment, and foreign exchange earnings. The data envelopment analysis technique is employed to estimate the relative efficiency of decision making units that uses several inputs to produce desirable and undesirable outputs. The efficiency scores of all manufacturing units exhibit the environmental consciousness of few producers is which may be due to state regulations to control pollution but overall the situation is far from satisfactory. Effective measures and instruments are still needed to check the rising pollution levels in water resources discharged by textile processing industry of the country. JEL classification: L67, Q53 Keywords: Data Envelopment Analysis (DEA), Decision Making Unit (DMU), Relative Efficiency, Undesirable Output


Sign in / Sign up

Export Citation Format

Share Document