scholarly journals Chitosan nanoparticles as a new technique in gene transformation into different plants tissues

2022 ◽  
Author(s):  
Eman Tawfik ◽  
Mohamed Ahmed

The utilization of chitosan nanoparticles is a novel technique for gene transformation into plant tissues. It takes a few minutes to transform gene to plant. UidA gene was detected in <i>Escherichia coli</i> (K12 strain) using polymerase chain reaction analysis by UidA-specific primers. The gene was transformed into the explants of two different plant species (<i>Solanum tuberosum</i> and <i>Paulownia tomentosa</i>). These plants have different natures as crop and woody plants respectively. Therefore, they have different abilities to express the UidA gene. The gene is expressed into blue color in plant tissues due to the formation and expression of the GUS enzyme. The transformation of the UidA gene was detected morphologically by the formation of blue color; and molecular using PCR. Chitosan nanoparticles were characterized by UV/Visible spectroscope and photographing with a transmission electron microscope (TEM). As a result of this research, it is suggested that chitosan nanoparticles be used in gene transformation into plant tissues. Because it is safe, quick, and inexpensive, as well as biocompatible and biodegradable.

1988 ◽  
Vol 66 (4) ◽  
pp. 677-682 ◽  
Author(s):  
A. R. Abad ◽  
K. R. Cease ◽  
R. A. Blanchette

A new technique was evaluated for rapid preparation of woody plant tissues for transmission electron microscopy. A low-viscosity medium formulation was developed using a water-soluble epoxy resin, Quetol 651. No dehydrating solvents were needed during preparation. Samples from living trees and xylary tissues of sound and decayed wood were studied to assess the quality of the media and embedding techniques. Infiltration, preservation of ultrastructural detail, sectioning qualities, and staining of the wood samples were found to be very good. The technique provided a fast, reliable method for preparing wood samples for ultrastructural observation.


Author(s):  
B. Craig ◽  
L. Hawkey ◽  
A. LeFurgey

Ultra-rapid freezing followed by cryoultramicrotomy is essential for the preservation of diffusible elements in situ within cells prior to scanning transmission electron microscopy and quantitative energy dispersive x-ray microanalysis. For cells or tissue fragments in suspension and for monolayer cell cultures, propane jet freezing provides cooling rates greater than 30,000°C/sec with regions up to 40μm in thickness free of significant ice crystal formation. While this method of freezing has frequently been applied prior to freeze fracture or freeze substitution, it has not been widely utilized prior to cryoultramicrotomy and subsequent x-ray microanalytical studies. This report describes methods devised in our laboratory for cryosectioning of propane jet frozen kidney proximal tubule suspensions and cultured embryonic chick heart cells, in particular a new technique for mounting frozen suspension specimens for sectioning. The techniques utilize the same specimen supports and sample holders as those used for freeze fracture and freeze substitution and should be generally applicable to any cell suspension or culture preparation.


2020 ◽  
Vol 30 (1) ◽  
Author(s):  
Sherien M. M. Atalla ◽  
Mokhtar M. Abdel-Kader ◽  
Nadia G. El-Gamal ◽  
Nehal S. El-Mougy

Abstract Maize (Zea mays L.) is one of the most economic crops in Egypt. Production of amylase from the waste of maize is the most economic and cheap renewable and most abundant raw materials present in environment. Biosynthesis of Cu-chitosan nanoparticles for amylase production by co-culturing between Trichoderma harzianum and Pseudomonas fluorescens at different ratios compared to free conditions was the main purpose of this study. The optimum ratio 8:2, recorded between P. fluorescens: T. harzianum, was the most promising for production of amylase produce 22.47 and 28.60 U/ml for free and nano, respectively. The UV visible spectral analysis Cu-chitosan NPs was 220 nm, while the mean diameter, using transmission electron microscopy was 0.5 μm. Application of fermented maize wastes by co-cultivation of P. fluorescence and T. harzianum, as a grain dressing before sowing declared the reduction in both root and foliar diseases during the maize growing season, starting from germination up to 70 days of its vegetative growth under field conditions. A promising approach is the creation and use of environmentally safe products, whose protective effect is based on the induction of hydrolase inhibitors in plants.


Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1654
Author(s):  
Wei-Tao Chen ◽  
Chin-Ann Teng ◽  
Cheng-Hsin Shih ◽  
Wei-Hsiang Huang ◽  
Yi-Fan Jiang ◽  
...  

During the spring, an outbreak of sudden death involving 58 birds occurred in a zoo. Histopathological examinations revealed variable numbers of intracytoplasmic basophilic microorganisms in the macrophages, hepatocytes, and renal epithelium of most birds, along with occasional botryoid intracytoplasmic inclusion bodies within histiocytes in the bursa of Fabricius. Based on the results of histopathological examinations, immunohistochemical staining, transmission electron microscopy, and polymerase chain reactions, genotype B Chlamydia psittaci infection concurrent with pigeon circovirus (PiCV) was diagnosed. A retrospective survey, including two years before the outbreak and the outbreak year, of C. psittaci and PiCV infections of dead birds in the aviaries, revealed that the outbreak was an independent episode. The findings of this study indicate that concurrent infection with C. psittaci and PiCV might lead to lethal outbreaks of chlamydiosis, particularly Streptopelia orientalis. In addition, persistently monitoring both pathogens and identifying potential PiCV carriers or transmitters might also help prevent lethal disease outbreaks.


2015 ◽  
Vol 21 (4) ◽  
pp. 1026-1033 ◽  
Author(s):  
Li He ◽  
Pei Zhang ◽  
Matthew F. Besser ◽  
Matthew Joseph Kramer ◽  
Paul M. Voyles

AbstractElectron correlation microscopy (ECM) is a new technique that utilizes time-resolved coherent electron nanodiffraction to study dynamic atomic rearrangements in materials. It is the electron scattering equivalent of photon correlation spectroscopy with the added advantage of nanometer-scale spatial resolution. We have applied ECM to a Pd40Ni40P20 metallic glass, heated inside a scanning transmission electron microscope into a supercooled liquid to measure the structural relaxation time τ between the glass transition temperature Tg and the crystallization temperature, Tx. τ determined from the mean diffraction intensity autocorrelation function g2(t) decreases with temperature following an Arrhenius relationship between Tg and Tg+25 K, and then increases as temperature approaches Tx. The distribution of τ determined from the g2(t) of single speckles is broad and changes significantly with temperature.


Sign in / Sign up

Export Citation Format

Share Document