Revising geographic distributions of eastern Pacific moray eels

Author(s):  
Katherine E Dale ◽  
Arturo Ramírez-Valdez ◽  
John E McCosker ◽  
Milton S Love

Under the influence of climate stressors, species distributions of fishes in the eastern Pacific are shifting, with many species moving poleward. Moray eels (family Muraenidae) are ecologically important predators inhabiting coastal reefs. Due to their cryptic nature and lack of commercial importance, the species distributions of muraenids in the tropical and subtropical eastern Pacific are poorly understood. Here, we document the geographic range size of 33 muraenid species in the eastern Pacific and also report a shift in the established population range of Muraena argus based on recent trapping efforts. We found that 17 species demonstrated shifts in geographic range size, including sampled-range expansions and new occurrences at offshore islands. Eleven species were observed in new biogeographic provinces, primarily in the northward direction to the San Diegan province. Trapping data and local knowledge gathered from fishing cooperatives suggest that M. argus has established populations at least 300 km further north than previously reported. Both the yearly number of reported observations and geographic extent of sampling have increased over time, but the number of recorded extensions has not. These results highlight the importance of compiling data from diverse sources (including museum records, local ecological knowledge, and the non-English scientific literature) as well as the continued value of biodiversity surveys in the eastern Pacific.

2021 ◽  
Vol 118 (22) ◽  
pp. e2021173118
Author(s):  
Trevor S. Fristoe ◽  
Milan Chytrý ◽  
Wayne Dawson ◽  
Franz Essl ◽  
Ruben Heleno ◽  
...  

Understanding drivers of success for alien species can inform on potential future invasions. Recent conceptual advances highlight that species may achieve invasiveness via performance along at least three distinct dimensions: 1) local abundance, 2) geographic range size, and 3) habitat breadth in naturalized distributions. Associations among these dimensions and the factors that determine success in each have yet to be assessed at large geographic scales. Here, we combine data from over one million vegetation plots covering the extent of Europe and its habitat diversity with databases on species’ distributions, traits, and historical origins to provide a comprehensive assessment of invasiveness dimensions for the European alien seed plant flora. Invasiveness dimensions are linked in alien distributions, leading to a continuum from overall poor invaders to super invaders—abundant, widespread aliens that invade diverse habitats. This pattern echoes relationships among analogous dimensions measured for native European species. Success along invasiveness dimensions was associated with details of alien species’ introduction histories: earlier introduction dates were positively associated with all three dimensions, and consistent with theory-based expectations, species originating from other continents, particularly acquisitive growth strategists, were among the most successful invaders in Europe. Despite general correlations among invasiveness dimensions, we identified habitats and traits associated with atypical patterns of success in only one or two dimensions—for example, the role of disturbed habitats in facilitating widespread specialists. We conclude that considering invasiveness within a multidimensional framework can provide insights into invasion processes while also informing general understanding of the dynamics of species distributions.


Paleobiology ◽  
2021 ◽  
pp. 1-15
Author(s):  
Dana S. Friend ◽  
Brendan M. Anderson ◽  
Warren D. Allmon

Abstract Rates of speciation and extinction are often linked to many ecological factors, traits (emergent and nonemergent) such as environmental tolerance, body size, feeding type, and geographic range. Marine gastropods in particular have been used to examine the role of larval dispersal in speciation. However, relatively few studies have been conducted placing larval modes in species-level phylogenetic context. Those that have, have not incorporated fossil data, while landmark macroevolutionary studies on fossil clades have not considered both phylogenetic context and net speciation (speciation–extinction) rates. This study utilizes Eocene volutid Volutospina species from the U.S. Gulf Coastal Plain and the Hampshire Basin, U.K., to explore the relationships among larval mode, geographic range, and duration. Based on the phylogeny of these Volutospina, we calculated speciation and extinction rates in order to compare the macroevolutionary effects of larval mode. Species with planktotrophic larvae had a median duration of 9.7 Myr, which compared significantly to 4.7 Myr for those with non-planktotrophic larvae. Larval mode did not significantly factor into geographic-range size, but U.S. and U.K. species do differ, indicating a locality-specific component to maximum geographic-range size. Non-planktotrophs (NPTs)were absent among the Volutospina species during the Paleocene–early Eocene. The relative proportions of NPTs increased in the early middle Eocene, and the late Eocene was characterized by disappearance of planktotrophs (PTs). The pattern of observed lineage diversity shows an increasing preponderance of NPTs; however, this is clearly driven by a dramatic extinction of PTs, rather than higher NPT speciation rates during the late Eocene. This study adds nuance to paleontology's understanding of the macroevolutionary consequences of larval mode.


Paleobiology ◽  
2020 ◽  
pp. 1-14
Author(s):  
Michelle M. Casey ◽  
Erin E. Saupe ◽  
Bruce S. Lieberman

Abstract Geographic range size and abundance are important determinants of extinction risk in fossil and extant taxa. However, the relationship between these variables and extinction risk has not been tested extensively during evolutionarily “quiescent” times of low extinction and speciation in the fossil record. Here we examine the influence of geographic range size and abundance on extinction risk during the late Paleozoic (Mississippian–Permian), a time of “sluggish” evolution when global rates of origination and extinction were roughly half those of other Paleozoic intervals. Analyses used spatiotemporal occurrences for 164 brachiopod species from the North American midcontinent. We found abundance to be a better predictor of extinction risk than measures of geographic range size. Moreover, species exhibited reductions in abundance before their extinction but did not display contractions in geographic range size. The weak relationship between geographic range size and extinction in this time and place may reflect the relative preponderance of larger-ranged taxa combined with the physiographic conditions of the region that allowed for easy habitat tracking that dampened both extinction and speciation. These conditions led to a prolonged period (19–25 Myr) during which standard macroevolutionary rules did not apply.


2018 ◽  
Vol 32 (5) ◽  
pp. 1194-1202
Author(s):  
Jack P. Hayes ◽  
Chris R. Feldman ◽  
Miguel B. Araújo

Sign in / Sign up

Export Citation Format

Share Document