Assessment of Polycyclic Aromatic Hydrocarbons in Underground Water around the Viccinity of Balogun-Biiro Dump Site, Oke Bale, Osogbo, Nigeria

Author(s):  
T A Adedosu

Well-water samples were collected from the vicinity of Balogun–biiro dump site located in Okebaale Osogbo, Osun state, Nigeria. The polycyclic aromatic hydrocarbons were determined qualitatively and quantitatively using GC-FID. The concentration of polycyclic aromatic hydrocarbons in the water samples ranged from 0.01235 µg/kg to 0.05365 µg/kg with mean concentration ranging from 0.00094 µg/kg to 0.00335 µg/kg respectively. The highest concentration of ∑16 𝑃𝐴𝐻𝑠was recorded in S6 and it was observed that there is decline in polycyclic aromatic hydrocarbons concentrations from point of water pollution. There was a significant concentration of both the lower and higher rings polycyclic aromatic hydrocarbons in the samples. These distributions as well as various polycyclic aromatic hydrocarbons diagnostic indices calculated showed that the sources of polycyclic aromatic hydrocarbons in the samples were both petrogenic and pyrogenic. The mean concentrations of polycyclic aromatic hydrocarbons recorded in the water samples showed a little bit enhanced values than the recommended tolerable limits, which indicated some level of pollution in the water samples

2020 ◽  
Vol 20 (22) ◽  
pp. 14303-14319
Author(s):  
Atallah Elzein ◽  
Gareth J. Stewart ◽  
Stefan J. Swift ◽  
Beth S. Nelson ◽  
Leigh R. Crilley ◽  
...  

Abstract. Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous pollutants in air, soil, and water and are known to have harmful effects on human health and the environment. The diurnal and nocturnal variations of 17 PAHs in ambient particle-bound PAHs were measured in urban Beijing (China) and Delhi (India) during the summer season using gas-chromatography–quadrupole time-of-flight mass spectrometry (GC-Q-TOF-MS). The mean concentration of particles less than 2.5 µm (PM2.5) observed in Delhi was 3.6 times higher than in Beijing during the measurement period in both the daytime and night-time. In Beijing, the mean concentration of the sum of the 17 PAHs (∑17 PAHs) was 8.2 ± 5.1 ng m−3 in daytime, with the highest contribution from indeno[1,2,3-cd]pyrene (12 %), while at night-time the total PAHs was 7.2 ± 2.0 ng m−3, with the largest contribution from benzo[b]fluoranthene (14 %). In Delhi, the mean ∑17 PAHs was 13.6 ± 5.9 ng m−3 in daytime and 22.7 ± 9.4 ng m−3 at night-time, with the largest contribution from indeno[1,2,3-cd]pyrene in both the day (17 %) and night (20 %). Elevated mean concentrations of total PAHs in Delhi observed at night were attributed to emissions from vehicles and biomass burning and to meteorological conditions leading to their accumulation from a stable and low atmospheric boundary layer. Local emission sources were typically identified as the major contributors to total measured PAHs in both cities. Major emission sources were characterized based on the contribution from each class of PAHs, with the four-, five- and six-ring PAHs accounting ∼ 95 % of the total PM2.5-bound PAHs mass in both locations. The high contribution of five-ring PAHs to total PAH concentration in summer Beijing and Delhi suggests a high contribution from petroleum combustion. In Delhi, a high contribution from six-ring PAHs was observed at night, suggesting a potential emission source from the combustion of fuel and oil in power generators, widely used in Delhi. The lifetime excess lung cancer risk (LECR) was calculated for Beijing and Delhi, with the highest estimated risk attributed to Delhi (LECR = 155 per million people), which is 2.2 times higher than the Beijing risk assessment value (LECR = 70 per million people). Finally, we have assessed the emission control policies in each city and identified those major sectors that could be subject to mitigation measures.


Author(s):  
F A Akanfe

The physicochemical properties with their distribution pattern and sources of sixteen polycyclic aromatic hydrocarbons (PAHs) listed as priority pollutants were investigated in underground water, sediment and soil samples around ‘Awosuuru’ dump-site in Osogbo Nigeria. The physicochemical parameters; degree of acidity (pH), total organic carbon (TOC), Biochemical oxygen demand (BOD), and chemical oxygen demand (BOD), in the samples were determined using standard methods. The polycyclic aromatic hydrocarbons (PAHs) were analyzed quantitatively and qualitatively in the samples using gas chromatography coupled with flame ionisation detector (GC-FID). The values of pH and TOC ranged from 7.76 to 8.02 and 0.82 to 1.01 (wt%) in water; 7.70 to 8.34 and 0.35 to 1.17(wt%) in sediment; 8.03 to 8.56 and 0.51 to 1.05 (wt%) in soil respectively, BOD ranged from 0.02 to 0.07 (mg/L) and COD from 36.40 to 64.40 (mg/L) in water samples. The physicochemical parameters result showed that the samples have some amount of carbonates, biodegradable and oxidizable pollutants and organic matter reflecting pollution in the study area. The concentrations of PAHs recorded in the samples indicated moderate pollution. Various diagnostic PAHs ratios indicate pyrolytic source majorly from burning of refuse. Also, the health implication of the pollution status of the study area was discussed.


2020 ◽  
Author(s):  
Atallah Elzein ◽  
Gareth J. Stewart ◽  
Stefan J. Swift ◽  
Beth S. Nelson ◽  
Leigh R. Crilley ◽  
...  

Abstract. Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous pollutants in air, soil and water and known to have harmful effects on human health and the environment. The diurnal and nocturnal variation of 17-PAHs in ambient particle-bound PAHs were measured in urban Beijing (China) and Delhi (India) during the summer season using GC-Q-TOF-MS. The mean concentration of particles less than 2.5 microns (PM2.5) observed in Delhi was 3.6 times higher than in Beijing during the measurement period in both the day-time and night-time. In Beijing, the mean concentration of the sum of the 17 PAHs (∑17-PAHs) was 8.2 ± 5.1 ng m−3 in daytime, with the highest contribution from Indeno[1,2,3-cd]pyrene (12 %), while at night-time the total PAHs was 7.2 ± 2.0 ng m−3, with the largest contribution from Benzo[b]fluoranthene (14 %). In Delhi, the mean ∑17-PAHs was 13.6 ± 5.9 ng m−3 in daytime, and 22.7 ± 9.4 ng m−3 at night-time, with the largest contribution from Indeno[1,2,3-cd]pyrene in both the day (17 %) and night (20 %). Elevated mean concentrations of total PAHs in Delhi observed at night were attributed to emissions from vehicles and biomass burning and to meteorological conditions leading to their accumulation from a stable and low atmospheric boundary layer. Local emission sources were typically identified as the major contributors to total measured PAHs, however, in Delhi 25 % of the emissions were attributed to long-range atmospheric transport. Major emission sources were characterized based on the contribution from each class of PAHs, with the 4, 5, and 6 ring PAHs accounting ~ 95 % of the total PM2.5-bound PAHs mass in both locations. The high contribution of 5 ring PAHs to total PAH concentration in summer Beijing and Delhi suggests a high contribution from petroleum combustion. In Delhi, a high contribution from 6 ring PAHs was observed at night, suggesting a potential emission source from the combustion of fuel and oil in power generators, widely used in Delhi. The lifetime excess lung cancer risk (LECR) was calculated for Beijing and Delhi, with the highest estimated risk attributed to Delhi (LECR = 155 per million people), 2.2 times higher than Beijing risk assessment value (LECR = 70 per million people). Finally, we have assessed the emission control policies in each city and identified those major sectors that could be subject to mitigation measures.


The Analyst ◽  
2000 ◽  
Vol 125 (7) ◽  
pp. 1321-1326 ◽  
Author(s):  
A. Andrade Eiroa ◽  
E. Vázquez Blanco ◽  
P. López Mahía ◽  
S. Muniategui Lorenzo ◽  
D. Prada Rodríguez

2015 ◽  
Vol 63 (1) ◽  
pp. 59-60 ◽  
Author(s):  
S Mandal ◽  
N Khuda ◽  
MR Mian ◽  
M Moniruzzaman ◽  
N Nahar ◽  
...  

Abstract not available DOI: http://dx.doi.org/10.3329/dujs.v63i1.21770 Dhaka Univ. J. Sci. 63(1): 59-60, 2015 (January)


Sign in / Sign up

Export Citation Format

Share Document